
1. Introduction

Let (Xi : i ∈ IN) be a sequence of independent and identically distributed (i.i.d.)
real-valued random variables. We assume that IEX1 exists. In this section, we will be
interested in the behaviour of the empirical mean X̄n := n−1

∑n
i=1Xi w.r.t. the actual

mean IEX1. We will call this behaviour concentration of X̄n around its mean.
The first “level” of concentration is given by the Law of Large Number (LLN) saying

that, almost surely,

(0.1) X̄n −→ IEX1 when n→∞.
Note that this result is very sharp, in the sens that, if X̄n converges a.s. then IEX1 is finite
and X̄n converges a.s. to IEX1.

For the second “level” of concentration, we need to assume that IEX2
1 exists. Then,

the behaviour of X̄n −EX1 is provided by the Central Limit Theorem (CLT) which says
that, after renormalizing,

√
n(X̄n − IEX1) behaves asymptotically like a Gaussian variable:

(0.2)
√
n(X̄n − IEX1) ;

√
V(X1)G when n→∞,

where V(X1) is the variance of X1, G ∼ N (0, 1) is a standard Gaussian random variable
and the symbol ; stands for the convergence in probability.

The two first level of concentration are asymptotic (n has to tend to infinity to make
these results relevant). In general, we have at hand only a finite number of random
variables. Nevertheless, we still want to know how behaves X̄n around its mean. We thus
need non-asymptotic concentration results (results which hold for any n). The first result
going into that direction is the classical Berry-Essen’s theorem (cf.[15]), which yields

(0.3) sup
t∈IR

∣∣∣P[√n(X̄n − IEX1) ≥ t
]
− P

[√
V(X1)G ≥ t

]∣∣∣ ≤ cIE|X1|3√
n

,∀n ∈ IN,

provided that IE|X1|3 <∞. Other Berry-Essen type of results can be found in the Section 7.
Berry-Essen theorem provides a non-asymptotic concentration result for the empir-

ical mean under the only assumption that a third moment exists. It leads to the first
concentration’s inequality of the type, for every t > 0,

(0.4) P
[
X̄n − IEX1 ≥ t

]
≤ P

[√
V(X1)G ≥

√
nt
]

+
cIE|X1|3√

n
.

Concentration’s inequalities of the form of Equation (0.4) are one of the main tools of
empirical processes theory. Nevertheless, the one obtained here, using Berry-Essen theorem
is too weak to be interesting. Indeed, the upper bound of Equation (0.4) behaves like the
second term which is of the order of n−1/2. Berry-Essen’s theorem is too general (only a
third moment is needed) to be applicable in many other setup where we have more than a
finite third moment. In some cases (cf. Exercise 0.4), we can even have an exponential
decrease (in function of n and t) of the tail P

[
X̄n − IEX1 ≥ t

]
, which then, behaves like

the term P
[√

V(X1)G ≥
√
nt
]
. In the following section, we will explore some special

cases (finite Orlicz’s norm, self-bounded, conditions on the moment, assumption on the
Legendre’s transform,..) which can lead to such exponential decay of the tail behaviour of
X̄n − IEX1.

2. Orlicz spaces

Definition 0.1 (cf. [4, 18]). A Young-Orlicz modulus is a convex increasing function
ψ from [0,∞) onto [0,∞) (in particular ψ(0) = 0 and ψ(x) → ∞ when x → ∞). Let
(X , τ, µ) be a measure space and ψ be a Young-Orlicz modulus. Denote by Lψ(X , τ, µ) the
space of all real-valued measurable functions f onto X such that

‖f‖ψ := inf
(
c > 0 : IEµψ

(
|f |/c

)
≤ 1
)
<∞.
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Define Lψ(X , τ, µ) to be the set of all the equivalence classes of functions in Lψ(X , τ, µ)
for the almost everywhere equality w.r.t. µ. Lψ(X , τ, µ) is called an Orlicz space.

Classical examples of Young-Orlicz moduli are

(0.5) φp(x) := xp, p ≥ 1 and ψα(x) := exp(xα)− 1, α ≥ 1,

we can also define Young-Orlicz modulus ψα for 0 < α < 1 by ψα(x) = exp(xα) − 1 for
x ≥ xα large enough and take ψα to be linear on [0, xα].

Theorem 0.1 ([4]). For any space (X , τ, µ) and any Young-Orlicz modulus ψ, the space
 Lψ(X , τ, µ) is a Banach space.

Let ψ be a convex function. We define the convex conjugate of ψ by

φ(y) := sup
(
xy − ψ(x) : x > 0

)
,∀y > 0.

Note that the convex conjugate of a Young-Orlicz modulus is also a Young-Orlicz modulus.

Theorem 0.2. Let ψ be a Young-Orlicz modulus and φ be its convex conjugate. Let
f ∈ Lψ(X , τ, µ) and g ∈ Lφ(X , τ, µ) then fg ∈ L1(X , τ, µ) and

IEµ|fg| ≤ 2 ‖f‖φ ‖g‖ψ .

Proof.By homogeneity, we can assume ‖f‖ψ = ‖g‖φ = 1. By definition of the convex
conjugate, we have, for any x ∈ X ,

|f(x)g(x)| ≤ ψ(|f(x)|) + φ(|g(x)|).
Taking the expectation and using that IEψ(|f(x)|), IEφ(|g(x)|) ≤ 1 leads to the result.

In particular, φp is an Orlicz modulus with convex conjugate cpφq, where p−1 + q−1 = 1.
In this case, Theorem 0.2 is, up to a multiplying constant, Hölder’s inequality.

For our concentration purpose of this section, we will restrict ourselves to the study of
the Lψ(Ω, σ,P) Orlicz spaces. We will denote these spaces by Lψ. These spaces are set of
equivalence classes of random variables defined on an abstract probability space (Ω, σ,P).
For instance, given is a real-valued random variable X and α ≥ 1, the ψα-norm of X is
defined by

‖X‖ψα := inf
(
c > 0 : IE exp

(
|X|α/cα

)
≤ 2
)
.

We first start with a maximal inequality.

Proposition 0.1 ([18]). There exists an absolute constant c0 such that the following holds.
Let ψ be Young-Orlicz modulus such that there exists an absolute constant c > 0 such that

lim sup
x,y→∞

ψ(x)ψ(y)
ψ(cxy)

<∞.

Then, for any real-valued random variables X1, . . . , Xn,∥∥∥∥max
1≤i≤n

Xi

∥∥∥∥
ψ

≤ c0ψ
−1(n) max

1≤i≤n
‖Xi‖ψ

Orlicz-spaces Lψ are very useful to characterize the tail behavior of random variables.
For instance, we say that X has a sub-gaussian behavior when ‖X‖ψ2

<∞, we say that X
has a sub-exponential behavior when ‖X‖ψ1

<∞ and in general, we say that X has a ψα
behavior when ‖X‖ψα <∞. It is easy to get L∞ ⊂ Lψα′ ⊂ Lψα ⊂ L2 when α′ ≤ α.

Proposition 0.2. Let X be a real-valued random variable and α ≥ 1. All the following
points are equivalent:

(1) ∃K1 > 0 : ‖X‖ψα ≤ K1;
(2) ∃K2 > 0 : IE exp

(
|X|α/Kα

2

)
≤ 2;

(3) ∃K3 > 0 :
[
IE|X|p

]1/p ≤ K3p
1/α, ∀p ∈ IN;
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(4) ∃K4,K
′
4 > 0 : P

[
|X| ≥ t

]
≤ K ′4 exp

(
− tα/Kα

4

)
,∀t > 0;

(5) there exists c > 0 such that ∃K5,K
′
5 > 0 : P

[
|X| ≥ t

]
≤ K ′5 exp

(
− tα/Kα

5

)
,∀t ≥ c;

(6) ∃K6,K
′
6 > 0,∀λ > 0, IE exp

(
λ|X|

)
≤ K ′6 exp

(
(λK6)α/(α−1)

)
.

Moreover, all the constants K1, . . . ,K6 are proportional, up to some multiplying constants
which depend only on α.

Proof.(1) ⇐⇒ (2): Assume (1). By monotone convergence, it is easy to check that
IE exp

(
|X|α/Kα

1

)
≤ 2. Point (2) follows easily. By definition of the Orlicz norm, (2) implies

(1).
(4) implies (3): Let p ∈ IN.

IE|X|p =
∫ ∞

0
ptp−1P

[
|X| ≥ t

]
dt ≤ 2p

∫ ∞
0

tp−1 exp
(
− tα/Kα

4

)
dt

=
2pKp−1

4

α
Γ(p/α) ≤ 2pKp−1

4

α
(p/α)p/α−1,

where Γ(u) =
∫∞

0 tu−1 exp(−t)dt satisfies Γ(u + 1) = uΓ(u). Thus,
(
IE|X|p

)1/p ≤
(2K4)α−1/αp1/α.

(3) implies (1): Let c > 0.

IE exp
(
|X|α/cα

)
=
∑
k≥0

1
k!cαk

IE
[
|X|αk

]
≤
∑
k≥0

1
k!

(Kα
3

cα
αk
)k
.

Now, using the Stirling’s formula it is easy to get 1
k!

(
Kα

3
cα αk

)k ∼ 1√
2πk

(
αeKα

3
cα

)k
. Thus, there

exists an absolute constant c0 such that for c ≥ c0α
1/αK3, we have IE exp

(
|X|α/cα

)
≤ 2.

This implies that ‖X‖ψα ≤ c0α
1/αK3.

(1) implies (4): Let t > 0. By Markov’s inequality:

P
[
|X| ≥ t

]
= P

[
exp

(
|X|α/Kα

1

)
> exp

(
tα/Kα

1

)]
≤ IE

[
exp

(
|X|α/Kα

1

)]
exp

(
− tα/Kα

1

)
≤ 2 exp

(
− tα/K1α

)
.

(4) ⇐⇒ (5): (4) implies (5) is trivial. Assume (5), for K4 ≥ (c(log 2)1/α) ∧K5, (4) is
satisfied.

(3) implies (6): Let λ > 0. We have

(0.6) IE exp
(
λ|X|

)
≤
∑
k≥0

(λK3)k
kk/α

k!
.

Now, we use the following approximation

(0.7) k! =
√

2πk
(
k/e
)k exp(λk) where

1
12k + 1

< λk <
1

12k

in Equation (0.6), to get, for ik :=
⌈
k(α−1)
α

⌉
(the integer part of k(α− 1)/α),

IE exp
(
λ|X|

)
≤ cα

∑
k≥0

[
(λK3)α/α−1

]ik
ik!

≤ c′α exp
(
(λK3)α/(α−1)

)
.

(6) implies (4): Let t > 0. For every λ > 0, by Markov’s inequality,

P
[
|X| > t

]
= P

[
exp(λ|X|) > exp(λt)

]
≤ exp(−λt)IE exp

(
λ|X|

)
≤ K ′6 exp

(
(λK6)α/(α−1) − λt

)
.

We obtain (4) by optimizing λ in the last inequality.
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In particular, moments and concentration properties of a random variable are closely
related:

Corollary 0.1. Let α ≥ 1 and X ∈ Lψα, we have

‖X‖ψα ∼ sup
p≥1

‖X‖p
p1/α

.

Now, we take a look of sums of ψα random variables.

Proposition 0.3. There exists an absolute constant c > 0 such that the following holds. Let
X,X1, . . . , Xn be i.i.d. mean-zero random variables. Then, for every a = (a1, . . . , an)t ∈
IRn, ∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
ψ2

≤ c ‖X‖ψ2
‖a‖2 .

Proof.

Lemma 0.1 (cf.[17]). Let X be a ψ2 mean zero random variable. Then,

IE exp(λ|X|) ≤ exp
(
8λ2 ‖X‖2ψ2

)
, ∀λ > 0.

Proof.For every t > 0, P
(
|X| ≥ t

)
≤ 2 exp

(
− t2/ ‖X‖2ψ2

)
. Thus, for any integer k ≥ 2,

IE|X|k ≤ 2 ‖X‖kψ2
Γ
(
k/2 + 1

)
, where we set Γ(u) :=

∫∞
0 tu−1 exp(−u)du for any u ≥ 1.

Using the last inequality, the fact that IEX = 0, that Γ is a non-decreasing function and
that ∀k ≥ 2,Γ(k + 1) = kΓ(k) = k!, we obtain, for every λ > 0,

IE exp(λ|X|) = 1 +
∑
k≥2

λkIE|X|k

k!
≤ 1 + 2

∑
k≥2

Γ(k/2 + 1)
Γ(k + 1)

(
λ ‖X‖ψ2

)k
≤ 1 + 2

∑
k≥2

(
λ ‖X‖ψ2

)k
Γ(k/2 + 1)

= 1 + 2
∑
k≥1

(
λ ‖X‖ψ2

)2k
Γ(k + 1)

+

(
λ ‖X‖ψ2

)2k+1

Γ(k + 3/2)

≤ 1 + 2
∑
k≥1

(
λ2 ‖X‖2ψ2

)k(1 +
(
λ2 ‖X‖2ψ2

)1/2)
Γ(k + 1)

,

if λ2 ‖X‖2ψ2
≥ 1, the sumand is smaller than 2(2λ2 ‖X‖2ψ2

)k+1/[(k + 1)!] otherwise, it is
smaller than 2(λ2 ‖X‖2ψ2

)k/k!. The claim follows by summing.

To prove Proposition 0.3, it suffices to upper bound the Legendre transform of
∣∣∑

i aiXi

∣∣.
Indeed, by independence, for every λ > 0,

IE exp
(
λ
∑
i

aiXi

)
=
∏
i

IE exp(λaiXi) ≤ exp
(
8λ2 ‖X‖2ψ2

‖a‖22
)
.

For the same reason, IE exp
(
− λ

∑
i aiXi

)
≤ exp

(
8λ2 ‖X‖2ψ2

‖a‖22
)
. Thus,

IE exp
(
λ
∣∣∣∑

i

aiXi

∣∣∣) ≤ 2 exp
(
8λ2 ‖X‖2ψ2

‖a‖22
)
.

We conclude with Proposition 0.2.

Now, we turn on p-th moment of sum of independent ψα r.v.. It appears that the
behavior of a general centred ψα r.v. can be easily reduced to the symmetric Weibull
variable. Meaning that, when considering p-th moments of sum of independent r.v. with a
given ψα tail decay, the worst case scenario is when these r.v. are the symmetric Weibull
variables (the one which are exactly ψα (and not ψα+ε for all ε > 0). We first recalll the
definition of Weibull and symmetric Weibull variables.



2. ORLICZ SPACES 5

A Weibull random variable with shape parameter α > 0 and scale parameter λ > 0 is a
r.v. with probability density function

fα,λ(x) :=

{
α
λ

(
x
λ

)α−1
exp

(
− (x/λ)α

)
if x ≥ 0

0 otherwise.

It is easy to see that P[X ≥ t] = exp
(
− (t/λ)α

)
for all t ≥ 0 and P[X ≥ t] = 1 for all t ≤ 0.

A symmetric Weibull r.v. with shape α > 0 and scale λ > 0 X is a variable satisfying
P[|X| > t] = exp

(
− (t/λ)α

)
for all t ∈ IR.

Theorem 0.3. There exists an absolute constant C > 0 such that the following holds. Let
1 ≤ α ≤ 2 and X1, . . . , Xn be independent mean zero random variables with ‖Xi‖ψα ≤ 1,∀i.
Then, for every a = (a1, . . . , an)t ∈ IRn and p ≥ 1,∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ C
(√
p ‖a‖2 + p1/α ‖a‖α∗

)
,

where α−1 + (α∗)−1 = 1.

Proof.Let p ≥ 1. We first start with a symmetrization argument. For that we
introduce a ghost sample X ′1, . . . , X

′
n (that is n independent r.v., independent of X1, . . . , Xn

and such that X ′i has the same distribution as Xi for every i = 1, . . . , n) and ε1, . . . , εn n i.i.d.
Rademacher variables independent of X1, . . . , Xn and X ′1, . . . , X

′
n. The symmetrization

argument is based on the fact that (X ′i −Xi) and εi(X ′i −Xi) have the same distribution.
Indeed, for any measurable function f , we have

IEf(εi(X ′i−Xi)) = IEIEε
[
f(εi(Xi−X ′i))|Xi, X

′
i

]
=

1
2

IE
[
f(Xi−X ′i)+f(Xi−X ′i)

]
= IEf(X ′i−Xi).

Using this fact, the fact that X1, . . . , Xn have mean zero and Jensen’s inequality, we get∥∥∥∥∥
n∑
i=1

aiXi

∥∥∥∥∥
p

=
(

IE
∣∣∣ n∑
i=1

aiXi

∣∣∣p)1/p
=
(

IE
∣∣∣ n∑
i=1

aiXi − IE
n∑
i=1

aiX
′
i

∣∣∣p)1/p

=
(

IE
∣∣∣IE[ n∑

i=1

aiXi −
n∑
i=1

aiX
′
i

∣∣∣X ′1, . . . , X ′n]∣∣∣p)1/p

≤
(

IE
∣∣∣ n∑
i=1

aiXi −
n∑
i=1

aiX
′
i

∣∣∣p)1/p
=
(

IE
∣∣∣ n∑
i=1

ai(Xi −X ′i)
∣∣∣p)1/p

=
(

IE
∣∣∣ n∑
i=1

aiεi(Xi −X ′i)
∣∣∣p)1/p

≤
(

IE
∣∣∣ n∑
i=1

aiεiXi

∣∣∣p)1/p
+
(

IE
∣∣∣ n∑
i=1

aiεiX
′
i

∣∣∣p)1/p
= 2
(

IE
∣∣∣ n∑
i=1

aiεiXi

∣∣∣p)1/p
(0.8)

Now, we turn to a contraction principle (cf.[12] p.95). We use the first version of
this principle saying that if (αi) and (βi) are two sequences of real numbers such that
|αi| ≤ |βi|,∀i and (εi) is a sequence of i.i.d. Rademacher variables then, for every p ≥ 1,

(0.9)

∥∥∥∥∥
n∑
i=1

εiαi

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

εiβi

∥∥∥∥∥
p

.

Before using the contraction principle, we have to “pre-conditioned” the variables in such
a way that we can compare them. Let β := (log 2)1/α and set Ui := (|Xi|−β)+, ∀i = 1, . . . , n.
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Let Y1, . . . , Yn be n i.i.d. Weibull r.v. with shape α and scale 1. Let i = 1, . . . , n. For every
t > 0,

P[Ui ≥ t] = P[|Zi| ≥ t+ β] ≤ 2 exp(−(t+ β)α) ≤ 2 exp
(
− tα − βα

)
= P[Yi ≥ t].

Using the last inequality, we can construct Ũ1, . . . , Ũn independent r.v. and Ỹ1, . . . , Ỹn
independent random variables such that for every i = 1, . . . , n, Ui ∼ Ũi, Yi ∼ Ỹi and
Ũi ≤ Ỹi. Indeed, for any random variable X we define the cumulative distribution function
and its generalized inverse by

FX(t) := P[X ≤ t],∀t ∈ IR and F−1
X (y) := inf

(
t ∈ IR : FX(t) ≥ y

)
, ∀y ∈ [0, 1].

Now, take U1, . . . ,Un n independent random variable uniformly distributed on [0, 1]. Then,
set for every i = 1, . . . , n, Ũi := F−1

Ui
(Ui) and Ỹi := F−1

Yi
(Ui).

We are now in position to apply the contraction principle (conditionally to Ũ1, . . . , Ũn
and Ỹ1, . . . , Ỹn):

(0.10)
(

IEε
∣∣∣ n∑
i=1

aiεiŨi

∣∣∣p)1/p
≤
(

IEε
∣∣∣ n∑
i=1

aiεiỸi

∣∣∣p)1/p
.

Taking the last inequality to the power p, then the expectation, and using the fact that
Ũi ∼ Ui and Ỹi ∼ Yi for every i = 1, . . . , n, we get

(0.11)

∥∥∥∥∥
n∑
i=1

aiεiUi

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

aiεiYi

∥∥∥∥∥
p

.

Now, we combine the symmetrization argument of (0.8), the contraction principle of
(0.11) and the fact that εiXi and εi|Xi| have the same probability distribution for every
i = 1, . . . , n: for every p ≥ 1,∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ 2

∥∥∥∥∥
n∑
i=1

aiεiXi

∥∥∥∥∥
p

(symmetrization)

= 2

∥∥∥∥∥
n∑
i=1

aiεi|Xi|

∥∥∥∥∥
p

(∀i, εiXi ∼ εi|Xi|)

≤ 2

∥∥∥∥∥
n∑
i=1

aiεi(β + Ui)

∥∥∥∥∥
p

(the contraction principle)

≤ 2

∥∥∥∥∥
n∑
i=1

aiεiβ

∥∥∥∥∥
p

+ 2

∥∥∥∥∥
n∑
i=1

aiεiUi

∥∥∥∥∥
p

≤ C√p ‖a‖2 + 2

∥∥∥∥∥
n∑
i=1

aiεiYi

∥∥∥∥∥
p

(the contraction principle),

where in the last inequality, we used Khintchine’s inequality.
To finish the proof, we use the fact that εiYi is distributed like a symmetric Weibull

r.v. with shape α and scaling parameter λ = 1. Thus,∥∥∥∥∥
n∑
i=1

aiεiYi

∥∥∥∥∥
p

=

∥∥∥∥∥
n∑
i=1

aiZi

∥∥∥∥∥
p

and to compute the p-th moment of
∑
aiZi where Z1, . . . , Zn are n i.i.d. symmetric Weibull

variables we refer to Corollaries 2.9 and 2.10 of [16].
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Thanks to the upper estimate on the p-th moments of the sum
∑
aiXi obtained in

Theorem 0.3 for every p ≥ 1, we can obtain a deviation result for
∑
aiXi.

Theorem 0.4 ([16]). There exists an absolute constant c > 0 such that the following holds.
Let 1 ≤ α ≤ 2 and X1, . . . , Xn be independent random variables such that ‖Xi‖ψα ≤ A,∀i.
Then, for every a = (a1, . . . , an)t ∈ IRn and every t ≥ 0,

P
[∣∣∣ n∑

i=1

aiXi

∣∣∣ ≥ tA] ≤ 2 exp
(
− cmin

( t2

‖a‖22
,

tα

‖a‖αα∗

))
,

where α−1 + (α∗)−1 = 1.

Proof.Without loss of generality, we can assume that ‖Xi‖ψα = 1 for all i = 1, . . . , n.
Take a = (a1, . . . , an)t ∈ IRn and set Z :=

∣∣∑n
i=1 aiXi

∣∣. Using Chebitchev’s inequality, we
obtain for every p ≥ 1,

(0.12) P[Z ≥ ‖Z‖p e] ≤
IEZp

‖Z‖pp ep
= exp(−p).

Take 1 ≤ p ≤
(
‖a‖2 / ‖a‖α∗

)2α/(2−α). Then, using Theorem 0.3 and (0.12), we obtain

P[Z ≥ cp1/α ‖a‖α∗ ] ≤ exp(−p)

and thus, for t = p1/α ‖a‖α∗ ∈
[
‖a‖α∗ ,

(
‖a‖22 / ‖a‖

α
α∗
)1/(2−α)],

(0.13) P[Z ≥ ct] ≤ exp
(
− tα

‖a‖αα∗

)
.

For every p ≥
(
‖a‖2 / ‖a‖α∗

)2α/(2−α), Theorem 0.3 and (0.12) yield P[Z ≥ c
√
p ‖a‖2] ≤

exp(−p) and thus, for t =
√
p ‖a‖2 ≥

(
‖a‖22 / ‖a‖

α
α∗
)1/(2−α),

(0.14) P[Z ≥ ct] ≤ exp
(
− t2

‖a‖22

)
.

The claim follows by combining the results of (0.13) and (0.14) for the case t ≥ ‖a‖α∗ . The
case 0 ≤ t ≤ ‖a‖α∗ follows by chosing the absolute constant c in a convenient way.

Theorem 0.5 (cf.[14]). Let X be a nonnegative random variable satisfying

IE exp
(
Xα
)
<∞, for some α ∈ (0, 1).

Let X1, . . . , Xn be n i.i.d. copies of X. There exists t0 > 0 depending only on α and IEX
and c > 0 depending only on α such that, for all t > t0,

P
[ 1
n

n∑
i=1

Xi − IEX > tIEX
]
≤ exp

(
− c(ntIEX)α

)
.

Now, we take a particular look to Rademacher series:

Proposition 0.4 ([12]). Let a1, . . . , an be n real numbers, ε1, . . . , εn be n independent
Rademacher variable and 0 < p <∞. There exists some constants Ap,j < Bp,j : j = 1, 2, 3
such that the following holds:

Ap,1 ‖a‖2 ≤

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
p

≤ Bp,1 ‖a‖2 and

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
∞

= ‖a‖1 .

If 0 < p ≤ 2 then,

Ap,2 ‖a‖2 ≤

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
ψp

≤ Bp,2 ‖a‖2 ,
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and for p > 2,

Ap,3 ‖a‖q,∞ ≤

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
ψp

≤ Bp,3 ‖a‖q,∞ ,

where ‖a‖q,∞ := supt>0 t|{i : |ai| > t}|1/q and p−1 + q−1 = 1.

The first inequality is the called Khintchin’s inequality. The best possible constants
Ap,1 and Bp,1 are known (cf.[7]). We retain that Bp,1 ≤ K

√
p (p ≥ 1) for some numerical

constant K.
One drawback of the Orlicz norms for the characterization of concentration’s properties

of a random variable is that it only allows one type of “concentration behavior”. In the
sens that, saying that Z ∈ Lψα tells that the tail decay of Z behaves like exp(−ctα), ∀t > 0.
Whereas some variables have more subtle behavior depending on the level of deviation t.
For instance, a Rademacher series Z =

∑
i aiεi satisfies ‖Z‖ψ2

∼ ‖a‖2. Thus, we can think
that Rademacher series and Gaussian series Y =

∑
i aigi have the same tail behavior (since

‖Y ‖ψ2
∼ ‖a‖2). Nevertheless, there is a gap between Rademacher series and Gaussian

series and the tail behavior of Rademacher series is ’level dependent’, the ‖a‖2-behavior
being the worse gaussian case. To describe the exact tail behavior of Rademacher series we
introduce the following interpolated norm

K1,2(x, t) := inf
( ∥∥x′∥∥

1
+ t
∥∥x′′∥∥

2
: x′ ∈ `n1 , x′′ ∈ `n2 , x = x′ + x′′, x = x′ + x′′

)
.

Theorem 0.6 ([13]). There exists an absolute constant c > 0 such that the following holds.
For every vector a = (a1, . . . , an)t ∈ IRn and every t > 0,

P
[ n∑
i=1

aiεi > K1,2(a, t)
]
≤ exp

(
− t2/2

)
and

P
[ n∑
i=1

aiεi > c−1K1,2(a, t)
]
≥ c−1 exp

(
− t2c

)
.

Note that this result has been extended to Banach-valued Rademacher chaos in [3]. We
can also obtain precise estimates of the Lp norms of Rademacher sums.

Theorem 0.7 (cf.[11, 8]). Let p ≥ 1, a1, . . . , an be real numbers and ε1, . . . , εn be indepen-
dent Rademacher random variables. We have∥∥∥∥∥

n∑
i=1

aiεi

∥∥∥∥∥
p

∼
∑
i≤p

a∗i +
√
p
(∑
i>p

a∗2i

)1/2
∼ K1,2(a,

√
p),

where (a∗i : i = 1, . . . , n) is the non-increasing rearrangement of the absolute values of
(a1, . . . , an).

Note that Theorem 0.7 is stronger than the result on the Lp moments of Rademacher
sums of Theorem 0.5 because the equivalence in Theorem 0.7 is up to an absolute constant
whereas, in Theorem 0.6, the multiplying constant depend on p. Moreover, it is obvious
that cp ‖a‖2 ≤ K1,2(a,

√
p) ≤ √p ‖a‖2 , ∀a ∈ IRn.

Proof.

3. Bernstein’s inequalities

We first start with bounded random variables.
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Theorem 0.8 (Prokhorov-Bennett’s inequality). Let X1, . . . , Xn be n independent mean-
zero random variables such that |Xi| ≤ c a.s.. Set σ2 := n−1

∑
i V(Xi). For any t > 0, we

have

P
[ 1
n

n∑
i=1

Xi ≥ t
]
≤ exp

(
− nσ2

c2
h
( ct
σ2

))
,

where h(u) := (1 + u) log(1 + u)− u,∀u > 0.

Proof.Let t > 0. For every λ > 0,

P
[ 1
n

n∑
i=1

Xi ≥ t
]
≤ exp(−λt)IE exp

(λ
n

n∑
i=1

Xi

)
= exp(−λt)

n∏
i=1

[
1 +

∑
k≥2

λkIEXk
i

nkk!

]
≤ exp

(
− λt

)
exp

(
nσ2

∑
k≥2

λkck−2

nkk!

)
≤ exp

(nσ2

c2

(
exp

(λc
n

)
− 1− cλ

n

)
− λt

)
.

The claim follows by optimizing in λ in the last inequality.

The most famous corollary of Prokhorov-Bennett’s inequality is Bernstein’s inequality
for bounded variables which follows since h(u) ≥ u2/(2 + 2u/3),∀u > 0.

Theorem 0.9 (Bernstein’s inequality). There exists an absolute constant c > 0 for which
the following holds. Let X1, . . . , Xn be n independent mean-zero random variables such
that Xi ∈ L∞,∀i. Then, for every t > 0,

P
[∣∣∣ 1
n

n∑
i=1

Xi

∣∣∣ ≥ t] ≤ 2 exp
(
− cnmin

( t2
σ2
,
t

M

))
,

where M := maxi ‖Xi‖∞ and σ2 := n−1
∑

i V(Xi).

From Bernstein’s inequality, we can deduce that the concentration behavior of a mean
of bounded variable has two regimes. On one hand, there is a subexponential regime w.r.t.
M for large values of t (t ≥ σ2/M). On the other hand, the mean has a subgaussian
concentration behaviour w.r.t. σ2. Bernstein’s inequality can be compared with Hoeffding’s
inequality (cf. Exercise 0.18) which provides a subgaussian concentration with respect to
M .

Now, we turn on to the “ψ1” version of Bernstein’s inequality.

Theorem 0.10 (Bernstein’s inequality for sub-exponential r.v.). There exists an absolute
constant c > 0 for which the following holds. Let X1, . . . , Xn be n independent mean-zero
and ψ1 random variables. Then, for every t > 0,

P
[∣∣∣ 1
n

n∑
i=1

Xi

∣∣∣ ≥ t] ≤ 2 exp
(
− cnmin

( t2
v̄
,
t

M

))
,

where M := maxi ‖Xi‖ψ1
and v̄ := n−1

∑
i ‖Xi‖2ψ1

.

Proof.Let X ∈ Lψ1 . Using that for every integer k ≥ 2, the following decomposition
IE|X|k ≤ Kk!ek ‖X‖2ψ1

‖X‖k−2
ψ1

(cf. Equation (0.7) combined with Proposition 0.2), it is
easy to get, for every λ ≥ 0 such that eλ ‖X‖ψ1

< 1,

(0.15) IE(exp(λX)− 1− λX) ≤
K(eλ)2 ‖X‖2ψ1

1− eλ ‖X‖ψ1

.

We denote by X̄n the empirical mean n−1
∑

iXi. The Legendre’s transform of X̄n is defined
by ψX̄n(λ) := log IE exp(λX̄n) for every λ ≥ 0. Using Equation (0.15) and independence,
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we obtain, for every λ ≥ 0 such that eλ ‖Xi‖ψ1
< 1,∀i = 1, . . . , n,

(0.16) ψX̄n(λ) ≤ Kλ2v̄
[ 1
n

n∑
i=1

‖Xi‖2ψ1

v̄
φ
(
‖Xi‖ψ1

)]
,

where φ(x) := (1− eλx)−1,∀x ∈ [0, (eλ)−1). Since φ is convex, we get, for every 0 ≤ λ <
(eM)−1 where M := maxi ‖Xi‖ψ1

,

(0.17) ψX̄n(λ) ≤ K(eλ)2v̄2

v̄ − eλµ̄
≤ K(eλ)2v̄

1− eλM
,

where µ̄ := n−1
∑

i ‖Xi‖3ψ1
≤Mv̄. We denote by ψ∗

X̄n
the convex conjugate of ψX̄n defined

by
ψ∗X̄n(t) := sup

(
tλ− ψX̄n(λ) : λ ∈ [0, λ−1)

)
,∀t ≥ 0.

Using Markov’s inequality and Equation (0.17), it is easy to get

P
[
X̄n ≥ t

]
≤ exp(−ψX̄n(t)) ≤ exp

( −cnt2
v̄ + tM

)
.

We obtain the same result for −X̄n and then, the claim follows.

4. Self-bounded variables

Now, we come to another type of concentration’s inequalities obtained using logarithmic
Sobolev inequalities. We will restrict ourselves to recall the results from [1].

We begin by introducing some notation that is used throughout this section. We assume
that X1, . . . , Xn are independent r.v. taking values in a measurable space X . Denote by
Xn

1 the vector of these n random variables. Let f : X n 7−→ IR be some measurable function.
We are concerned with the concentration of

Z := f(X1, . . . , Xn).

Throughout, X ′1, . . . , X
′
n denote independent copies of X1, . . . , Xn, and we write

Z(i) := f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

Define the random variables V+ and V− by

V+ := IE
[∑

i

(Z − Z(i))21IZ>Z(i) |Xn
1

]
and V− := IE

[∑
i

(Z − Z(i))21IZ<Z(i) |Xn
1

]
.

Theorem 0.11. For all θ > 0 and λ ∈ (0, 1/θ),

log IE exp
(
λ(Z − IEZ)

)
≤ λθ

1− λθ
log IE

[
exp

(λV+

θ

)]
and

log IE exp
(
− λ(Z − IEZ)

)
≤ λθ

1− λθ
log IE

[
exp

(λV−
θ

)]
.

Corollary 0.2. Assume that there exists a positive constant c such that V+ ≤ c a.s.. Then,
for all t > 0,

P[Z > IEZ + t] ≤ exp(−t2/(4c)).
Moreover, if V− ≤ c a.s. then, for all t > 0,

P[Z < IEZ − t] ≤ exp(−t2/(4c)).
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Corollary 0.3. Assume the random variable V+ to be such that there exists a positive
constant c such that for all λ ∈ (0, c−1),

log IE
[

exp
(
λ(V+ − IEV+)

)]
≤ λ2cIEV+

1− cλ
.

Then,

P[Z > IEZ + t] ≤ exp
( −t2

4IEV+ + 2(c+ 1)t/3

)
.

The same result holds for the lower tail when the Legendre transform of V− satisfies
the same type of inequality.

Theorem 0.12. Assume that there exist positive constants a and b such that

V+ ≤ aZ + b.

Then, for all t > 0,

P[Z > IEZ + t] ≤ exp
( −t2

4aIEZ + 4b+ 2at

)
.

Theorem 0.13. Assume that for some non-decreasing function g,

V− ≤ g(Z).

Then, for all t > 0,

P[Z < IEZ − t] ≤ exp
( −t2

4(e− 1)IEg(Z)

)
.

Theorem 0.14. Assume that for some non-decreasing function g, V− ≤ g(Z) and for
any value of Xn

1 and X ′i, |Z − Z(i)| ≤ 1 for all i = 1, . . . , n. Then, for all t > 0, with
t ≤ (e− 1)IEg(Z) we have

P[Z < IEZ − t] ≤ exp
( −t2

4IEg(Z)

)
.

Theorem 0.15. Assume that f is nonnegative. Assume that there exists a random variable
W , such that

V+ ≤WZ.

Then, for all θ > 0 and λ ∈ (0, 1/θ),

log IE exp
(
λ(
√
Z − IE

√
Z)
)
≤ λθ

1− λθ
log IE exp

(λW
θ

)
.

Bounds for the upper tail probability of Z may be derived using Theorem 0.15, since
for any λ > 0,

P[Z > IEZ + t] ≤ IE exp
(
λ(
√
Z − IE

√
Z)
)

exp(−λx),

for x :=
√

IEZ + t−
√

IEZ.
An immediate application of Corollary 0.2 is the well known McDiarmind inequality.

Theorem 0.16 (Bounded difference inequality). Assume that for all i = 1, . . . , n, there
exists a constant ci such that

sup
x1,...,xn,x′i

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci.

Then, for all t > 0,

P[Z > IEZ + t],P[Z < IEZ − t] ≤ exp
( −2t2∑

i c
2
i

)
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5. Martingale inequalities

In this section, we recall three useful results of [12]. Recall that L1 = L1(Ω,A,P) is
the space of all measurable functions f on Ω such that IE|f | < ∞. Assume that we are
given a filtration

{∅,Ω} := A0 ⊂ A1 ⊂ · · · ⊂ An = A
of sub-σ-algebras of A. The symbol IEAi denotes the conditional operator w.r.t. Ai. Given
f ∈ L1, we set, for each i = 1, . . . , n,

di := IEAif − IEAi−1f

so that f − IEf =
∑

i di. (di : i ≤ n) defines a so-called martingale difference sequence
characterized by the property IEAidi = 0, i ≤ n.

One of the typical martingale difference that we have in mind is a sequence (Xi : i ≤ n)
of independent mean zero random variables for the filtration (Ai : i ≤ n) defined by
Ai := σ(X1, . . . , Xi). Hence, all the results present for f − IEf =

∑
di can be applied to

the sum
∑
Xi.

Theorem 0.17. Assume that ‖di‖∞ <∞ and let a :=
(∑n

i=1 ‖di‖
2
∞
)1/2. Then, for every

t > 0,
P[f − IEf > t] ≤ exp

(
− t2/(2a2)

)
.

Theorem 0.18. Set a := maxi ‖di‖∞ and b ≥
(∑∥∥∥IEAi−1d

2
i

∥∥∥ )1/2. Then, for every t > 0,

P[f − IEf > t] ≤ exp
[−t2

2b2
(

2− exp(at/b2)
)]

Theorem 0.19. Let 1 < p < 2 and denote by q its conjugate (p−1 + q−1 = 1). There exists
a constant cq depending only on q such that for a := maxi i1/p ‖di‖∞ and any t > 0

P[f − IEf > t] ≤ exp
(
− cqtq/aq

)
.

6. Talagrand’s concentration inequalities

In this section, we recall the very useful results on the concentration of supremum of
sum of independent random variables due to M.Talagrand.

Theorem 0.20. There exists an absolute constant K > 0 such that the following holds.
Let (X , σ) be a measurable space, F be a set of real-valued functions defined on X and
X,X1, . . . , Xn be n+ 1 i.i.d. X -valued random variables. Assume that IEf(X) = 0, ∀f ∈ F ,
that ‖F‖∞ := sup

(
‖f(X)‖∞ : f ∈ F

)
and σ2(F) := sup

(
V(f(X)) : f ∈ F

)
are finite.

Denote

Z := sup
f∈F

1
n

n∑
i=1

f(Xi) and Z̄ := sup
f∈F

∣∣∣ 1
n

n∑
i=1

f(Xi)
∣∣∣.

For every x > 0 and α > 0, with probability greater than 1− exp(−x),

Z ≤ (1 + α)IEZ +Kσ(F)
√
x

n
+K

(
1 + α−1

)‖F‖∞ x
n

.

For every x, with probability greater than 1− exp(−x),

Z ≥ (1− α)IEZ −Kσ(F)
√
x

n
−K

(
1 + α−1

)‖F‖∞ x
n

.

The same inequalities hold for Z̄.
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7. Exercises and related results

Exercise 0.1 (Stein’s approximation method for Berry-Essen type theorem). Let (Xi :
i ≥ 1) be a sequence of i.i.d. mean zero random variables with variance 1. Let dL denote
the Lipschitz distance for probability distribution defined by dL(P,Q) := sup

(
|Ph−Qh| :

h ∈ Lip
)

for any probability distribution P and Q, where Lip is the set of all Lipschitz
functions with Lipschitz constant 1. We have

dL

(
L
( 1
n

n∑
i=1

Xi

)
,N (0, 1)

)
≤ 5IE|X1|3√

n
,∀n ∈ IN.

Proof.The proof is based on Stein’s method which is at the heart of the approximation
theory in probability. We present here the general scheme of this method together with
the proof of the exercise (cf. Wikipedia article).

Stein’s method is a way to bound the distance of two probability distributions in a
specific probability metric. To be tractable with the method, the metric must be given in
the form

(0.18) d(P,Q) := sup
h∈H

∣∣Ph−Qh∣∣ = sup
h∈H
|IEh(W )− IEh(Y )|,

where P and Q are two probability distributions on the measurable space (X , σ), W and
Y are random variables with probability distribution P and Q respectively and H is a set
of functions from X to IR. This set has to be large enough, so that the above definition
indeed yields a metric. Important examples are the total variation metric, where H
consists of all the indicator functions of measurable sets, the Kolmogorov (uniform)
metric, where H is the set of all the half-line indicator functions, and the Lipschitz (first
order Wasserstein; Kantorovich) metric, where H is itself a metric space made of all
Lipschitz-continuous functions with Lipschitz-constant 1. However, note that not every
metric can be represented in the form (0.18).

In what follows we think of P as a complicated distribution (e.g. a sum of dependent
random variables), which we want to approximate by a much simpler and tractable
distribution Q (e.g. the standard normal distribution to obtain a central limit theorem).

The Stein operator: We assume now that the distribution Q is a fixed distribution;
in what follows we shall in particular consider the case where Q is the standard normal
distribution, which serves as a classical example of the application of Stein’s method.

First of all, we need an operator A which acts on a class C of functions f from X to IR,
and which ’characterizes’ the distribution Q in the sense that the following equivalence
holds:

(0.19) IE(Af)(Y ) = 0, ∀f ∈ C ⇐⇒ Y has probability distribution Q.

Such an operator is called the Stein operator. For the standard normal distribution
(N (0, 1)), Stein’s lemma exactly yields such an operator:

(0.20) IE(Y f(Y )− f ′(Y )) = 0,∀f ∈ C1
b ⇐⇒ Y ∼ N (0, 1)

where C1
b is the set of all continuously differentiable functions with bounded derivative.

Thus, for the standard Gaussian probability distribution we can take

(0.21) Af(x) = xf(x)− f ′(x),∀f ∈ C1
b , ∀x ∈ IR

as a Stein Operator.
There are different ways to find Stein operators. But by far the most important one

is via generators (cf. works of Barbour and Götze). Assume that Z := (Zt)t≥0 is a
(homogeneous) continuous time Markov process taking values in X . If Z has the stationary
distribution Q it is easy to see that, if A is the generator of Z, we have IE(Af)(Y ) = 0 for
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a large set of functions f . Thus, generators are natural candidates for Stein operators and
this approach will also help us for later computations.

Setting up the Stein equation: Observe now that saying that P is close to Q with
respect to d is equivalent to saying that the difference of expectations in (0.18) is close
to 0, and indeed if P = Q it is equal to 0. We hope now that the operator exhibits the
same behavior: clearly if P = Q we have IE(Af)(W ) = 0 and hopefully if P ≈ Q we have
IE(Af)(W ) ≈ 0.

To make this statement rigorous we could find a function f , such that, for a given
function h,

(0.22) IE(Af)(W ) = IEh(W )− IEh(Y )

so that the behavior of the right hand side is reproduced by the operator A and f . However,
this equation is too general. We solve instead the more specific equation

(Af)(x) = h(x)− IEh(Y ), ∀x

which is called the Stein equation. Replacing x by W and taking expectation with
respect to W , we are back to (0.22), which is what we effectively want. Now all the effort
is worth only if the left hand side of (0.22) is easier to bound than the right hand side.
This is, surprisingly, often the case.

If Q is the standard normal distribution and we use (0.21), the corresponding Stein
equation is

xf(x)− f ′(x) = h(x)− IEh(Y ),∀x ∈ IR,

which is just an ordinary differential equation having for solution

(0.23) f(x) = exp(x2/2)
∫ x

−∞
[h(s)− IEh(Y )] exp(−s2/2)ds.

In particular, this solution satisfies

(0.24) ‖f‖∞ ,
∥∥f ′∥∥∞ , ∥∥f ′′∥∥∞ ≤ cmax{‖h‖∞ ,

∥∥h′∥∥∞},
where this bound is of course only applicable if h is differentiable (or at least Lipschitz-
continuous, which, for example, is not the case if we regard the total variation metric of
the Kolmogorov metric). As the standard normal distribution has no extra parameters, in
this specific case, the constants are free of additional parameters.

Note that, up to this point, we did not make use of the random variable W . So,
the steps up to here in general have to be calculated only once for a specific probability
distribution Q, metric d and Stein operator A.

Now, we turn to the proof of the Berry-Essen type of result for the Lipschitz distance.
We set W :=

∑n
i=1Xi. By a Taylor expansion, we get∣∣IE(f ′(W )−Wf(W ))

∣∣ ≤ n ∥∥f ′′∥∥ [(1/2)IE|Xi|3 + IE|Xi|2IE|Xi|
]
.

We conclude with Equation (0.24).

Exercise 0.2 (cf. [4]). Let ψ be a Young-Orlicz modulus. By convexity, ψ has a right
derivative in every point x ≥ 0, we set Ψ(x) := ψ′(x+). Assume that Ψ is unbounded and
Ψ(x) tends to zero when x tends to zero. Denote Φ(y) := inf

(
x ≥ 0 : Ψ(x) ≥ y

)
and

φ(y) :=
∫ y

0 Φ(t)dt.
(1) φ is a Young-Orlicz modulus;
(2) ∀x, y ≥ 0, xy ≤ ψ(x) + φ(y).

In particular, for all x, y ≥ 0,

xy ≤ exp
(
x2/β2

)
− 1 + βy log1/2

(
1 + y

)
.
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Exercise 0.3. Let X ∈ Lψ2. We have
∥∥X2

∥∥
ψ1

= ‖X‖ψ2
and ‖X‖ψ2

≤ IE exp(X2). If

X ∼ N (0, 1) then ‖X‖ψ2
≤
√

8/3.

Exercise 0.4 (Bernoulli estimate and Chernoff’s bound). Let δ1, . . . , δn be n i.i.d. Bernoulli
random variables with mean δ (also called selectors). Chernoff’s bound says that for
every t > 0,

P
[ 1
n

n∑
i=1

δi − δ ≥ t
]
,P
[ 1
n

n∑
i=1

δi − δ ≤ −t
]
≤ exp(−nhδ(t)),

where hδ(t) := (1− δ − t) log
(

1−δ−t
1−δ

)
+ (δ + t) log

(
δ+t
δ

)
.

Let (Ai : i ≥ 1) be a sequence of independent sets such that a :=
∑

i P(Ai) <∞. For
every n, the Bernoulli estimate says that

P
[∑

i

1IAi ≥ n
]
≤ an

n!
≤
(ea
n

)n
.

Proof.We use the classical Cramer-Chernoff method to obtain, for all t > 0,

P
[ 1
n

n∑
i=1

δi − δ ≥ t
]
≤ exp

(
− ψ∗δ̄n(t)

)
,

where ψ∗
δ̄n

is the convex conjugate of the Legendre transform of δ̄n := n−1
∑n

i=1 δi − δ
defined by ψδ̄n(λ) := log IE exp(λδ̄n). Using independence, we have ψδ̄n(λ) = nψδ1−δ(λ/n)
and so ψ∗

δ̄n
= nψ∗δ1−δ(λ), for all λ > 0. It is easy to get, for every λ ≥ 0,

ψδ1−δ(λ) = log
(
δ exp(λ) + 1− δ

)
− λδ

and, for every 0 ≤ t < 1− δ,

ψ∗δ1−δ(t) = (1− δ − t) log
(1− δ − t

1− δ

)
+ (δ + t) log

(δ + t

δ

)
.

We also have, for every δ < t ≤ 1,

ψ∗δ1(t) = (1− t) log
( 1− t

1− δ

)
+ t log

( t
δ

)
.

Now, we turn to the proof of the Bernoulli estimate. Using the union-bound and the
independence, we get

P
[∑

i

1IAi ≥ n
]

= P
[
∪i1<...<in Ai1 ∩ . . . ∩Ain

]
≤

∑
i1<...<in

n∏
j=1

P(Aj)

=
1
n!

∑
i1 6=···6=in

∏
j

P(Aij ) ≤
1
n!

∑
(i1,...,in)

∏
j

P(Aij ) ≤
an

n!
.

We conclude with Stirling’s formula.

Exercise 0.5 (Borell’s inequality). Let (Xt : t ∈ T ) be a centered Gaussian process then,
for every x > 0,

P
[

sup
t∈T

Xt ≥ Med
(

sup
t∈T

Xt

)
+ x
]
≤ P[G > x],

where G is a standard Gaussian variable and Med denotes the median.

Exercise 0.6. Let a1, . . . , an be n real numbers and ε1, . . . , εn be n independent Rademacher.
Then, ∥∥∥∥∥

n∑
i=1

aiεi

∥∥∥∥∥
ψ2

≤
√

6 ‖a‖2
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Proof.First, note that for every x ∈ IR, exp(x) + exp(−x) ≤ 2 exp(x2/2). Now, using
the symmetry of

∑
i aiεi, we have, for every λ > 0,

IE exp
(
λ|
∑
i

aiεi|
)
≤ 2IE exp

(
λ
∑
i

aiεi
)
≤ 2

∏
i

exp(λai) + exp(−λai)
2

≤ 2 exp
(
λ2 ‖a‖22

)
.

We finish the proof with Proposition 0.2.

Exercise 0.7. Let Z be a nonnegative random variable such that there exists c > 0
satisfying

P
[
Z − IEZ ≥ mIEZ

]
≤ c−1 exp(−cm).

Then, for every 1 < p <∞, there exists cp such that

cp
(
IEZp

)1/p ≤ IEZ ≤
(
IEZp

)1/p
.

Proof.Let 1 < p < ∞. Jensen inequality yields IEZ ≤
(
IEZp

)1/p
. Set a := IEZ. We

have

IEZp = IEZp1IZ≤a +
∞∑
k=1

IEZp1Ika<Z≤(k+1)a

≤ ap +
∑
k≥1

(k + 1)papP
[
Z > ka

]
≤ ap + c−1ap

∑
k≥1

(k + 1)p exp(−c(k − 1)) ≤ c′pap.

Exercise 0.8 (Rosenthal’s inequality, cf. [9]). Let p ≥ 1 and X1, . . . , Xn be independent
random variables with finite p-th moment. There exists constants Ap and Bp that grow like
p/ log p as p→∞ such that:

if X1, . . . , Xn are symmetric then, for p > 2,

max

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
2

,
(∑

i

‖Xi‖pp
)1/p) ≤ ∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤ Ap max

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
2

,
(∑

i

‖Xi‖pp
)1/p) ;

if the X1, . . . , Xn are nonnegative then,

max

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
1

,
(∑

i

‖Xi‖pp
)1/p) ≤ ∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤ Bp max

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
1

,
(∑

i

‖Xi‖pp
)1/p)

.

Let p ≥ 1 and Y1, . . . , Yn be random variables such that IEY p
i = 1,∀i. There exists

constants Cp and Dp that grow like p/ log p as p→∞ such that:
if Y1, . . . , Yn are symmetrically exchangeable (i.e. the vectors (Y1, . . . , Yn) and (ε1Yπ(1), . . . , εnYπ(n))

have the same probability distribution for every permutation π) then, for p ≥ 2 and every
vector a = (a1, . . . , an)t ∈ IRn, then,

max
(
Cn−1/2 ‖a‖2 , ‖a‖

p
p

)
≤

∥∥∥∥∥
n∑
i=1

aiYi

∥∥∥∥∥
p

≤ Cp max
(
Cn−1/2 ‖a‖2 , ‖a‖

p
p

)
,

where C :=
∥∥∥(∑i |Yi|2

)2∥∥∥
p
.
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if the X1, . . . , Xn are nonnegative exchangeable then, for every vector of nonnegative
scalars a = (a1, . . . , an) ∈ IRn

+,

max
(
Cn−1/2 ‖a‖1 , ‖a‖

p
p

)
≤

∥∥∥∥∥
n∑
i=1

aiYi

∥∥∥∥∥
p

≤ Cp max
(
Cn−1/2 ‖a‖1 , ‖a‖

p
p

)
,

where C := ‖
∑

i Yi‖p.

Exercise 0.9 (Paley-Zygmund, cf.[2]). Let X be a nonnegative random variable such that
0 < IEXq <∞ for some q > 0. Then, for any 0 ≤ λ ≤ 1 and 0 < p ≤ q <∞, we have

P
[
X ≥ λ ‖X‖p

]
≥
(

(1− λp)
(‖X‖p
‖X‖q

)p/q) q
q−p

.

Proof.Let 0 < λ < 1. By Hölder inequality, we have

IEZp = IEZp1IZ≤λ‖Z‖p + IEZp1IZ>λ‖Z‖p ≤
(
λ ‖Z‖p

)p + (IEZq)p/qP[Z > λ ‖Z‖p]
q−p
p .

The claim follows easily.

Exercise 0.10 (Hoffmann-Jφrgensen, cf.[12]). Let (B, ‖·‖) be separable Banach space,
0 < p < ∞ and let X1, . . . , Xn be independent random variables in Lp(B). Set Sk =∑k

i=1Xi, k ≤ n. Then, for

t0 := inf{t > 0 : P[max
k≤n
‖Sk‖ > t] ≤ 2−2p−1}

we have
IE max

k≤n
‖Sk‖p ≤ 22p+1IE max

i≤n
‖Xi‖p + 2(4t0)p.

If, moreover, the Xi’s are symmetric and t0 := inf{t > 0 : P[‖Sn‖ > t] ≤ (8 · 3p)−1}, then

IE ‖Sn‖p ≤ 2 · 3pIE max
i≤n
‖Xi‖p + 2(3t0)p.

Exercise 0.11 (Khintchine’s inequality by the hyper-contractivity argument, cf. [2]). Let
x1, . . . , xn be n real numbers and ε1, . . . , εn be independent Rademacher variables. Then,∥∥∥∥∥

n∑
i=1

εixi

∥∥∥∥∥
2

≤
√

3

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
1

.

Proof.Set Z =
∑
εixi. We have, for every α = 2/3,

IEZ2 = IE|Z|α|Z|2−α ≤ ‖|Z|α‖1/α
∥∥|Z|2−α∥∥

1/(1−α)

= [IE|Z|]α
[
IE|Z|

2−α
1−α
]1−α = [IE|Z|]2/3

[
IE|Z|4

]1/3
.(0.25)

A simple computation yields IEZ4 ≤ 3(IEZ2)2. The claim follows by plugging the last
inequality in Equation (0.25).

Exercise 0.12 (Khintchine’s inequality, cf. [2]). Let F be vector space endowed with a
norm. Let {xi} be a countable set of elements in F and {εi : i ∈ IN} be a set of independent
Rademacher variables. Then, for any 1 < p < q <∞,∥∥∥∑ εixi

∥∥∥
p
≤
∥∥∥∑ εixi

∥∥∥
q
≤
(q − 1
p− 1

)1/2 ∥∥∥∑ εixi

∥∥∥
p

where ‖X‖p := (IE ‖X‖p)1/P for any F -value random variable X.
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Exercise 0.13 (Latala’s results on the Lp moments of sum of independent r.v., cf. [11]).
Let X1, . . . , Xn be a sequence of independent real random variables and let S :=

∑
Xi. We

want precise bound on ‖S‖p :=
(
IE|
∑

iXi|p
)1/p for every p > 0. We introduce the following

Orlicz-norm

| ‖(Xi)‖ |p := inf
{
t > 0 :

n∑
i=1

log
(
φp

(Xi

t

))
≤ p
}
,

where φp(x) := IEϕp(X) and ϕp(x) := |1 + x|p.
If the Xi’s are nonnegative then,

e− 1
2e2
| ‖(Xi)‖ |p ≤ ‖S‖p ≤ e| ‖(Xi)‖ |p, for p ≥ 1

and
(e− 1)1/p

2e2
| ‖(Xi)‖ |p ≤ ‖S‖p ≤ e| ‖(Xi)‖ |p, for p ≤ 1.

If the Xi’s are symmetric then, for p ≥ 2,

(0.26)
e− 1
2e2
| ‖(Xi)‖ |p ≤ ‖S‖p ≤ e| ‖(Xi)‖ |p, for p ≤ 1.

If X,X1, . . . , Xn are i.i.d. and nonnegative then, for p ≥ 1,

‖S‖p ∼ sup
{p
s

(n
p

)1/s
‖X‖s : max

(
1, p/n

)
≤ s ≤ p

}
.

If X,X1, . . . , Xn are i.i.d. and symmetric then, for p ≥ 2,

‖S‖p ∼ sup
{p
s

(n
p

)1/s
‖X‖s : max

(
1, p/n

)
≤ s ≤ p

}
.

Note that for X1, . . . , Xn independent, mean zero random variables and ε1, . . . , εn
independent Rademacher random variables independent of the Xi’s, we have

1
2

∥∥∥∑Xi

∥∥∥
p
≤
∥∥∥∑ εiXi

∥∥∥
p
≤ 2

∥∥∥∑Xi

∥∥∥
p
.

Hence, we obtain Result (0.26) for mean zero r.v. by setting φp(Xi) = φp(εiXi) = IEϕ̃p(Xi)
where ϕ̃p(x) := (1/2)(ϕp(x) + ϕp(−x)).

Finally, Result (0.26) can be obtained for p < 2 thanks to Khintchine inequality saying
that, for symmetric r.v. X1, . . . , Xn,

cp

∥∥∥∥(∑X2
i

)1/2
∥∥∥∥
p

≤
∥∥∥∑Xi

∥∥∥
p
≤
∥∥∥∥(∑X2

i

)1/2
∥∥∥∥
p

.

Exercise 0.14 (norms in IRn). interpolated norms, ψnα-norm,

Exercise 0.15 ([10]). Let α ≥ 1 and p ≥ α. There exists a constant cα,p > 0, depending
only on α and p, such that the following holds. Let X1, . . . , Xn be ψα random variables
and let X∗1 , . . . , X

∗
n be the non-increasing rearrangement of the absolute values of the Xi’s.

Then,

IE
(1
k

k∑
i=1

X∗pi

)1/p
≤ log1/α

(cα,pn
k

)
.

Proof.Since the Xi’s are ψα r.v. then,

IE
(1
k

k∑
i=1

exp(X∗αi )
)
≤ IE

(1
k

n∑
i=1

exp(|Xi|α)
)
≤ cn

k
.
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For every a1, . . . , an real numbers such that ai ≥
(
p/α − 1

)p/α := c0,∀i. Since x 7−→
exp(xα/p) is convex on [c0,∞), we have

exp
[(1
k

k∑
i=1

api

)α/p]
≤ 1
k

k∑
i=1

exp(aαi ).

Repacing X∗i by max(X∗i , c0), we get

IE exp
[(1
k

k∑
i=1

X∗pi

)α/p]
≤ IE

(1
k

k∑
i=1

exp(X∗αi + cα0 )
)
≤ cα,pn

k
.

The claim follows by using the concavity of the logarithm, the convexity of x 7−→ |x|α and
Jensen’s inequality.

Exercise 0.16 (Gaussian variables). Let g1, . . . , gn be standard Gaussian variables N (0, 1)
and let g∗1, . . . , g

∗
n be the non-increasing rearrangement of the absolute values of the gi’s.

Then,
IE max1≤i≤n

gi√
i+1
≤ c0, IEg∗i , ‖g∗i ‖ψ2

, ‖g∗i ‖Lp
Let X ∼ Nn(0, In) be a standard Gaussian variable with values in IRn.

(
IE|X|p

)1/p ∼(
IE|X|2

)1/2 if p ≤ n and
(
IE|X|p

)1/p ∼ p1/2 if p ≥ n.
Counter-example of a ψ1 vector which is not a ...........? Take g ∼ N (0, 1) and

X ∼ Nn(0, 1) and set Y := gX. Then
(
IE|Y |p

)1/p
/
(
IE|Y |2

)1/2 tends to infinity.
Moreover, if the gi’s are independent then,

IEg∗i ≥ c0

√
log
(
(2k)/i

)
,∀i ≤ n/2 and IEg∗i ≥ 1− i

k + 1
, ∀n/2 ≤ i ≤ n

this result can be found in [6].

Exercise 0.17. For all integers D and N with 1 ≤ D ≤ N , the following inequality holds

(0.27)
D∑
i=1

(
N
i

)
≤
(eN
D

)D
.

Proof.The right-hand side being increasing with respect to D, it is larger than (
√

2e)n >
2n when D ≥ n/2. Thus Equation (0.27) is trivial whenever D ≥ n/2. We assume now
that D < n/2. Take S to be a r.v. with Binomial distribution Bin(N, 1/2). Chernoff’s
inequality (cf. Exercise 0.4) implies that

D∑
i=1

(
N
i

)
= 2NP[S ≤ D] ≤ exp

(
N log 2−Nh1/2(D/N − δ)

)
≤ exp

(
N(D/N − (D/N) log(D/N))

)
.

where h1/2 is defined in Exercise 0.4 and satisfies h1/2(1− x) ≥ log 2 + x− x log x,∀x < 1.
This concludes the proof.

Exercise 0.18 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables
such that ai ≤ Xi ≤ bi, ∀i. Then, for every t > 0,

P
[ 1
n

n∑
i=1

Xi − IEXi ≥ t
]
,P
[ 1
n

n∑
i=1

IEXi −Xi ≥ t
]
≤ exp

( −2n2t2∑n
i=1(bi − ai)2

)
.
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Proof.Let Y be a mean zero random variable such that a ≤ Y ≤ b a.s. and λ ≥ 0. By
convexity, for any x ∈ [a, b], exp(λx) ≤ x−a

b−a exp(λb) + b−x
b−a exp(λa). Thus,

IE exp(λY ) ≤ b

b− a
exp(λa)− a

b− a
exp(λb) ≤ exp(φ(λ(b− a))),

where φ(u) := −pu + log(1 − p + p exp(u)) for p = −a/(b − a). It is easy to see that
φ′(0) = 0 and φ′′(u) ≤ 1/4. By a Taylor expansion, we get, for some θ ∈ [0, λ(b − a)],
φ(λ(b− a)) = φ(0) + λ(b− a)φ′(0) + (λ2(b− a)2/2)φ′′(θ) ≤ λ2(b− a)2/8. We conclude with
the classical Cramer-Chernoff method.

Exercise 0.19 (Hoeffding-Azuma’s inequality). Let (Xn)n≥1 be a martingale with bounded
differences (|Xk −Xk−1| ≤ ck,∀k). Then, for any integer n and any real number t > 0,

P
[
Xn −X0 > t

]
≤ exp

( −t2

2
∑n

i=1 ci

)
.

Exercise 0.20 (Einmahl and Masson, cf.[5]). Let X1, . . . , Xn be independent nonnegative
random variables such that IEX2

i ≤ σ2 then, for any t > 0,

P
[ 1
n

n∑
i=1

(
IEXi −Xi

)
≥ t
]
≤ exp

(−t2
2σ2

)
.

Proof.For any x ≥ 0, exp(−x) ≤ 1− x+ x2/2. Thus, for any i = 1, . . . , n and t > 0,

IE exp(−tXi) ≤ IE
(
1− tXi + t2X2

i /2
)
≤ exp

(
− tIEXi + t2IEX2

i /2
)
.

Thus, for every λ > 0,

P
[ 1
n

n∑
i=1

(
IEXi−Xi

)
≥ t
]
≤ exp(−λt)

n∏
i=1

IE exp
(
(λ/n)(IEXi−Xi)) ≤ exp

(
−λt+(λ2/2n)σ2

)
.

The claim follows by optimizing the last equation in λ.

Exercise 0.21 (Maximal inequality for ψ2 r.v.). There exists an absolute constant c > 0
such that the following holds. Let X1, . . . , Xn be ψ2 random variables such that maxi ‖Xi‖ψ2

≤
σ. Then,

IE max
i=1,...,n

|Xi| ≤ cσ
√

log(n).

Proof.By Jensen, for any λ > 0,

exp
(
λIE max

i
|Xi|

)
≤ IE exp

(
λmax

i
|Xi|

)
≤ IE

∑
i

exp(λ|Xi|) ≤ c1n exp
(
c0λ

2σ2
)
.

Thus, IE maxi |Xi| ≤ log(c1n)
λ + c0λσ

2. The claim follows by optimizing in λ.

Exercise 0.22. Let X ∈ Lψα and X1, . . . , Xn be n i.i.d. copies of X. Then, w.h.p.

‖(Xi)n1‖ψnα ≤ c0 ‖X‖ψα .

Exercise 0.23 (cf. [1]). Let (B, ‖·‖) be a separable Banach space and let X1, . . . , Xn

be i.i.d. B-valued random variables such that ‖X1‖ ≤ 1 almost surely. Let ε1, . . . , εn be
independent Rademacher variables. Set

Z := IE

[∥∥∥∥∥
n∑
i=1

εiX1

∥∥∥∥∥ ∣∣∣Xn
1

]
.

For any t > 0,

P[Z ≥ IEZ + t] ≤ exp
( −t2

4IEZ + 2t

)
and P[Z ≤ IEZ − t] ≤ exp

( −t2

4(e− 1)IEZ

)
.
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Proof.We consider the function f : Bn 7−→ IR defined by f(xn1 ) := IE ‖
∑

i εixi‖.
We have Z = f(Xn

1 ). Let X ′1, . . . , X
′
n be n independent copies of X1, . . . , Xn and set

Z(i) := f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)for every i = 1, . . . , n.

Lemma 0.2. Let (xn)n≥1 be a sequence in B and (εn)n≥1 be a sequence of independent
Rademacher random variables. Then, the sequence

(
IE ‖
∑n

i=1 εixi‖ : n ≥ 1
)

is non-
decreasing.

Proof.Let n be an integer. Let (ε1, . . . , εn) ∈ {−1, 1}n. By convexity of the norm, we
have∥∥∥∥∥

n∑
i=1

εixi

∥∥∥∥∥ ≤ 1
2

∥∥∥∥∥
n∑
i=1

εixi + xn+1

∥∥∥∥∥+
1
2

∥∥∥∥∥
n∑
i=1

εixi − xn+1

∥∥∥∥∥ = IEεn+1

∥∥∥∥∥
n∑
i=1

εixi + εn+1xn+1

∥∥∥∥∥ .
The claim follows by taking the expectation in the last equation w.r.t. (ε1, . . . , εn).

Using Lemma 0.2, we have

Z(i) ≥ IE

∥∥∥∥∥∥
n∑

j=1,j 6=i
εjXj

∥∥∥∥∥∥
∣∣∣Xn

1


and, since the Xi’s are bounded, Z − Z(i) ≤ 1.

Moreover, let D denote a dense countable set in the unit ball of the dual B∗ of B. For
every choice of ε = (ε1, . . . , εn) ∈ {−1, 1}n, the Hahn-Banach theorem implies that there
exists some element vε ∈ D such that∥∥∥∥∥∥

n∑
j=1

εjXj

∥∥∥∥∥∥ =

〈
vε,

n∑
j=1

εjXj

〉
and for the same realization of the Rademacher variables,∥∥∥∥∥∥

n∑
j=1,j 6=i

εjXj

∥∥∥∥∥∥ ≥
〈
vε,

n∑
j=1,j 6=i

εjXj

〉
Hence, conditionally to Xn

1 , we have

n∑
i=1

(Z − Z(i))21IZ>Z(i) ≤
n∑
i=1

IEε

∥∥∥∥∥∥
n∑
j=1

εjXj

∥∥∥∥∥∥− IEε

∥∥∥∥∥∥
n∑

j=1,j 6=i
εjXj

∥∥∥∥∥∥
≤ IEε

n∑
i=1

〈vε, εiXi〉 = IEε

∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥ .
The first part of the claim follows by applying Theorem 0.12 with a = 1 and b = 0. The
proof of the second part of the claim follows the same line as the first part together with
Theorem 0.13.
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