1. Introduction

2. Maurey's empirical method

We denote by \mathcal{U}_d the set of all the unit vectors $x \in \mathcal{S}^{N-1}$ such that $|\operatorname{Supp}(x)| \leq d$, where $\operatorname{Supp}(x)$ stands for the support of x and \mathcal{S}^{d-1} is the unit euclidean ball of \mathbb{R}^N . Let Γ be an orthogonal matrix with size N. We assume that all the entries of Γ are such that

(0.1)
$$|\Gamma_{ij}| \le \frac{c}{\sqrt{N}}, \forall i, j \in \{1, \dots, N\},$$

where c > 0 is an absolute constant.

We denote by $\Gamma_1, \ldots, \Gamma_N$ the row vectors of Γ and we define for some $p \in \{1, \ldots, N\}$ the norm

$$\|x\|_{\infty,p} := \max_{1 \le j \le p} |\langle \Gamma_j, x \rangle|, \forall x \in \mathbb{R}^N.$$

We want to compute the entropy numbers $N(\epsilon, \mathcal{U}_d, \|\cdot\|_{\infty, p})$. For that we will use the following ℓ_1^N approximation of the set \mathcal{U}_d :

$$\mathcal{U}_d \subset \sqrt{d}\mathcal{B}_1^N,$$

where \mathcal{B}_1^N denotes the unit ℓ_1^N ball of \mathbb{R}^N . Remark that for every $\epsilon > 0$, we have $N(\epsilon, \sqrt{d}\mathcal{B}_1^N, \|\cdot\|_{\infty,p}) = N(\epsilon/\sqrt{d}, \mathcal{B}_1^N, \|\cdot\|_{\infty,p}).$

Theorem 0.1. There exists an absolute constant c > 0 such that the following holds.

$$N(\epsilon, \mathcal{B}_1^N, \|\cdot\|_{\infty, p}) \leq \begin{cases} \exp\left(\frac{c\log p}{N\epsilon^2}\log(2N+1)\right), & \forall \epsilon > 0; \\ \exp\left(N\log\left(1+\frac{2c}{\epsilon\sqrt{N}}\right)\right) & \forall \epsilon > 0. \end{cases}$$

Proof.

The proof is splited in two cases: for small "scale" ($\epsilon \leq n^{-1/2}$), we will use the volumetric estimate. For larger scale ($\epsilon \geq n^{-1/2}$), we will use the empirical method of Maurey.

Let $x \in \mathcal{B}_1^N$. We define the random variable Z with values in $\{\pm e_1, \ldots, \pm e_N\} \cup \{0\}$ (where (e_1, \ldots, e_N) is the canonical basis of \mathbb{R}^N) by

$$\mathbb{P}[Z = \text{Sign}(x_i)e_i] = |x_i|, \forall i = 1, ..., N \text{ and } \mathbb{P}[Z = 0] = 1 - ||x||_1$$

Note that $\mathbb{E}Z = x$.

Take Z_1, \ldots, Z_m be *m* i.i.d. random variables having the same probability distribution as *Z*. By the Giné-Zinn symmetrization argument and the classical Gaussian bound on Rademacher processes, we obtain

$$(\star) := \mathbb{E} \left\| x - \frac{1}{m} \sum_{i=1}^{m} Z_i \right\|_{\infty, p} \le \frac{2}{m} \mathbb{E}_Z \mathbb{E}_\epsilon \left\| \sum_{i=1}^{m} \epsilon_i Z_i \right\|_{\infty, p} \le \frac{c}{m} \mathbb{E}_Z \mathbb{E}_g \left\| \sum_{i=1}^{m} g_i Z_i \right\|_{\infty, p}$$

where $\epsilon_1, \ldots, \epsilon_m$ are *m* i.i.d. Rademacher r.v. and g_1, \ldots, g_m are *m* i.i.d. standard Gaussian r.v..

Set $\gamma_j := \sum_{i=1}^m g_i \langle \Gamma_j, Z_i \rangle$ for all $j = 1, \ldots, p$. For every $1 \le j \le p, \gamma_j$ is a centered Gaussian r.v. with variance $\sigma_j^2 = \sum_{i=1}^m \langle \Gamma_j, Z_i \rangle^2 \le cm/N$ (where we use the upper bound (0.1). Thus, by using the Gaussian maximal inequality,

$$\mathbb{E}_g \left\| \sum_{i=1}^m g_i Z_i \right\|_{\infty, p} \le \sqrt{\log p} \sqrt{\frac{cm}{N}}.$$

This yields $(\star) \leq c\sqrt{(\log p)/(mN)}$.

Now, we choose the minimal m such that

$$c\sqrt{\frac{\log p}{mN}} \le \epsilon \text{ i.e. } m \sim \frac{\log p}{\epsilon^2 N}.$$

For this choice of m we have

$$\mathbb{E} \left\| x - \frac{1}{m} \sum_{i=1}^{m} Z_i \right\|_{\infty, p} \le \epsilon$$

In particular, there exists $\omega \in \Omega$ such that

$$\left\|x - \frac{1}{m}\sum_{i=1}^{m} Z_i(\omega)\right\|_{\infty,p} \le \epsilon$$

and so for $z := \frac{1}{m} \sum_{i=1}^{m} Z_i(\omega)$, we have $||x - z||_{\infty, p} \le \epsilon$. We finish the proof for the large scale by noting th

We finish the proof for the large scale by noting that there exists at most $(2N+1)^m$ different values of $z := \frac{1}{m} \sum_{i=1}^m Z_i(\omega)$.

For the small scale, remark that $||x||_{\infty,p} \leq cN^{-1/2}$ because $|\langle \Gamma_j, x \rangle| \leq |\Gamma_j|_{\infty} |x|_1 \leq cN^{-1/2} \forall j = 1, \ldots, N$. Thus, $\mathcal{B}_1^N \subset cN^{-1/2} \mathcal{B}_{\infty,p}$, where $\mathcal{B}_{\infty,p}$ denotes the unit ball w.r.t. $||\cdot||_{\infty,p}$. Now, we want to compute $N(\epsilon, cN^{-1/2} \mathcal{B}_{\infty,p}, ||\cdot||_{\infty,p}) = N(c^{-1}\sqrt{N}\epsilon, \mathcal{B}_{\infty,p}, ||\cdot||_{\infty,p})$. Denote by Λ a maximal set of $c^{-1}\sqrt{N}\epsilon$ -separated points of $\mathcal{B}_{\infty,p}$ w.r.t. $||\cdot||_{\infty,p}$. We know that $N(c^{-1}\sqrt{N}\epsilon, \mathcal{B}_{\infty,p}, ||\cdot||_{\infty,p}) \leq |\Lambda|$. We have

$$\bigcup_{x \in \Lambda} \left(x + \frac{\sqrt{N}\epsilon}{2c} \mathcal{B}_{\infty,p} \right) \subset \left(1 + \frac{\sqrt{N}\epsilon}{2c} \right) \mathcal{B}_{\infty,p},$$

where, by definition of Λ , the balls $\left(x + \frac{\sqrt{N\epsilon}}{2c} \mathcal{B}_{\infty,p}\right), \forall x \in \Lambda$ are all disjoint. Thus, by taking the volume, we get

$$|\Lambda| \left(\frac{\sqrt{N}\epsilon}{2c}\right)^N |\mathcal{B}_{\infty,p}| \le \left(1 + \frac{\sqrt{N}\epsilon}{2c}\right)^N |\mathcal{B}_{\infty,p}|,$$

which yields

$$N(c^{-1}\sqrt{N}\epsilon, \mathcal{B}_{\infty,p}, \|\cdot\|_{\infty,p}) \le |\Lambda| \le \left(1 + \frac{2c}{\sqrt{N}\epsilon}\right)^N$$

3. Combinatorial argument and Theorem of the majorizing measure

We denote by \mathcal{U}_d the set of all the unit vectors $x \in \mathcal{S}^{N-1}$ such that $|\operatorname{Supp}(x)| \leq d$, where $\operatorname{Supp}(x)$ stands for the support of x and \mathcal{S}^{d-1} is the unit euclidean ball of \mathbb{R}^N .

Theorem 0.2. Let T be a subset of \mathbb{R}^N and g_1, \ldots, g_n be n i.i.d. standard gaussian random variables. We have