1. Introduction
2. Maurey’s empirical method

We denote by U the set of all the unit vectors 2 € SN~! such that |Supp(z)| < d,
where Supp(z) stands for the support of x and S~! is the unit euclidean ball of R™. Let
I' be an orthogonal matrix with size N. We assume that all the entries of I' are such that

(0.1) Dyl € —=,Vi,j € {1,.... N},

\F

where ¢ > 0 is an absolute constant.
We denote by I'y,..., 'y the row vectors of I" and we define for some p € {1,..., N}
the norm

. N
[l = max | (T} |, Y2 € R

We want to compute the entropy numbers N(e,Uy, |||, ,)- For that we will use the
following K{V approximation of the set Ufy:

Uy C VdBY,

where BY denotes the unit ¢) ball of RY. Remark that for every ¢ > 0, we have

N (e, VaBY, |l oo ) = N(e/Vd, BY, [ ]] oo )
Theorem 0.1. There exists an absolute constant ¢ > 0 such that the following holds.
exp (Clogp log(2N + 1)), Ve>0;

exp (N log <1 + 6\2/%) Ve > 0.

N(e, BY, |1l sop) <

Proof.

The proof is splited in two cases: for small “scale” (¢ < n~'/2), we will use the
volumetric estimate. For larger scale (¢ > n~/?), we will use the empirical method of
Maurey.

Let 2 € BY. We define the random variable Z with values in {+e,...,+eyx} U {0}
(where (e1,...,ey) is the canonical basis of RY) by

P[Z = Sign(z;)e;] = |z3|,Vi=1,...,N and P[Z =0] =1 — ||z .

Note that EZ = x.

Take Z1,...,Z, be m ii.d. random variables having the same probability distribution
as Z. By the Giné-Zinn symmetrization argument and the classical Gaussian bound on
Rademacher processes, we obtain

1 — 2 i c i
(B =B|o— 3 Z|| < SEE > aZil < B |y g7
i=1 00,p =1 0,p i=1 00,p
where €1, ..., €, are mii.d. Rademacher r.v. and g1, ..., g, are mi.i.d. standard Gaussian

r.v..

Set v = >, 9i (T4, Z;) for all j = 1,...,p. For every 1 < j < p, v; is a centered
Gaussian r.v. with variance 0]2 =" (T}, Zi)?> < em/N (where we use the upper bound
(0.1). Thus, by using the Gaussian maximal inequality,

m
Zg’iZ’L V log 6]7\7;
i=1

This yields (%) < ¢y/(logp)/(mN).

m?p



Now, we choose the minimal m such that

lo lo
&b <ele mn~ &P

mN 2N’

For this choice of m we have

1 m
E|o—— Z Zi <e
=1 00,p
In particular, there exists w € €2 such that
1 m
z=— Z Z;i(w) <e
i=1 00,p

and so for z := = 3" Z;(w), we have ||z — oo p S €

We finish the proof for the large scale by noting that there exists at most (2/V + 1)™
different values of z := L 3" | Z(w).

For the small scale, remark that [z, , < cN~Y2 because | (T;,2)| < |Tjloo]z1 <
¢cN=Y29j =1,...,N. Thus, BY C ¢eN“'/2B.,,, where By, denotes the unit ball w.r.t.
[/l o p-Now, we want to compute N(e,cN~V2B p, [loop) = N(c™'V/Ne, By s Ml oo )-
Denote by A a maximal set of ¢~!v/Ne-separated points of Bo ), W.T.t. [0 p- We know
that N(c'VNe, Boo s [loop) < [A]. We have

+ ‘/56300,],) c (1 + ge)zsm,p,

where, by defintion of A, the balls (:1: + YNe Boo7p>,Vac € A are all disjoint. Thus, by taking

Uzea (x

2c
the volume, we get

)

|A|(\/N€

\/N6>N|B
2c 2c oop

N
) 1Bocyl < (1+
which yields

2c \N

-1

N(eVNe Bras [ oe,) < 181 < (14 )

3. Combinatorial argument and Theorem of the majorizing measure

We denote by U the set of all the unit vectors z € SN¥~1 such that [Supp(z)| < d,
where Supp(z) stands for the support of z and S?~! is the unit euclidean ball of R .

Theorem 0.2. Let T be a subset of RN and g1,...,gn be n i.i.d. standard gaussian
random variables. We have



	1. Introduction
	2. Maurey's empirical method
	3. Combinatorial argument and Theorem of the majorizing measure

