1. Introduction

2. Maurey's empirical method

We denote by \mathcal{U}_{d} the set of all the unit vectors $x \in \mathcal{S}^{N-1}$ such that $|\operatorname{Supp}(x)| \leq d$, where $\operatorname{Supp}(x)$ stands for the support of x and \mathcal{S}^{d-1} is the unit euclidean ball of \mathbb{R}^{N}. Let Γ be an orthogonal matrix with size N. We assume that all the entries of Γ are such that

$$
\begin{equation*}
\left|\Gamma_{i j}\right| \leq \frac{c}{\sqrt{N}}, \forall i, j \in\{1, \ldots, N\} \tag{0.1}
\end{equation*}
$$

where $c>0$ is an absolute constant.
We denote by $\Gamma_{1}, \ldots, \Gamma_{N}$ the row vectors of Γ and we define for some $p \in\{1, \ldots, N\}$ the norm

$$
\|x\|_{\infty, p}:=\max _{1 \leq j \leq p}\left|\left\langle\Gamma_{j}, x\right\rangle\right|, \forall x \in \mathbb{R}^{N}
$$

We want to compute the entropy numbers $N\left(\epsilon, \mathcal{U}_{d},\|\cdot\|_{\infty, p}\right)$. For that we will use the following ℓ_{1}^{N} approximation of the set \mathcal{U}_{d} :

$$
\mathcal{U}_{d} \subset \sqrt{d} \mathcal{B}_{1}^{N}
$$

where \mathcal{B}_{1}^{N} denotes the unit ℓ_{1}^{N} ball of \mathbb{R}^{N}. Remark that for every $\epsilon>0$, we have $N\left(\epsilon, \sqrt{d} \mathcal{B}_{1}^{N},\|\cdot\|_{\infty, p}\right)=N\left(\epsilon / \sqrt{d}, \mathcal{B}_{1}^{N},\|\cdot\|_{\infty, p}\right)$.
Theorem 0.1. There exists an absolute constant $c>0$ such that the following holds.

$$
N\left(\epsilon, \mathcal{B}_{1}^{N},\|\cdot\|_{\infty, p}\right) \leq \begin{cases}\exp \left(\frac{c \log p}{N \epsilon^{2}} \log (2 N+1)\right), & \forall \epsilon>0 \\ \exp \left(N \log \left(1+\frac{2 c}{\epsilon \sqrt{N}}\right)\right) & \forall \epsilon>0\end{cases}
$$

Proof.

The proof is splited in two cases: for small "scale" $\left(\epsilon \leq n^{-1 / 2}\right)$, we will use the volumetric estimate. For larger scale $\left(\epsilon \geq n^{-1 / 2}\right)$, we will use the empirical method of Maurey.

Let $x \in \mathcal{B}_{1}^{N}$. We define the random variable Z with values in $\left\{ \pm e_{1}, \ldots, \pm e_{N}\right\} \cup\{0\}$ (where $\left(e_{1}, \ldots, e_{N}\right)$ is the canonical basis of \mathbb{R}^{N}) by

$$
\mathbb{P}\left[Z=\operatorname{Sign}\left(x_{i}\right) e_{i}\right]=\left|x_{i}\right|, \forall i=1, \ldots, N \text { and } \mathbb{P}[Z=0]=1-\|x\|_{1}
$$

Note that $\mathbb{E} Z=x$.
Take Z_{1}, \ldots, Z_{m} be m i.i.d. random variables having the same probability distribution as Z. By the Giné-Zinn symmetrization argument and the classical Gaussian bound on Rademacher processes, we obtain

$$
(\star):=\mathbb{E}\left\|x-\frac{1}{m} \sum_{i=1}^{m} Z_{i}\right\|_{\infty, p} \leq \frac{2}{m} \mathbb{E}_{Z} \mathbb{E}_{\epsilon}\left\|\sum_{i=1}^{m} \epsilon_{i} Z_{i}\right\|_{\infty, p} \leq \frac{c}{m} \mathbb{E}_{Z} \mathbb{E}_{g}\left\|\sum_{i=1}^{m} g_{i} Z_{i}\right\|_{\infty, p}
$$

where $\epsilon_{1}, \ldots, \epsilon_{m}$ are m i.i.d. Rademacher r.v. and g_{1}, \ldots, g_{m} are m i.i.d. standard Gaussian r.v..

Set $\gamma_{j}:=\sum_{i=1}^{m} g_{i}\left\langle\Gamma_{j}, Z_{i}\right\rangle$ for all $j=1, \ldots, p$. For every $1 \leq j \leq p, \gamma_{j}$ is a centered Gaussian r.v. with variance $\sigma_{j}^{2}=\sum_{i=1}^{m}\left\langle\Gamma_{j}, Z_{i}\right\rangle^{2} \leq c m / N$ (where we use the upper bound (0.1). Thus, by using the Gaussian maximal inequality,

$$
\mathbb{E}_{g}\left\|\sum_{i=1}^{m} g_{i} Z_{i}\right\|_{\infty, p} \leq \sqrt{\log p} \sqrt{\frac{c m}{N}}
$$

This yields $(\star) \leq c \sqrt{(\log p) /(m N)}$.

Now, we choose the minimal m such that

$$
c \sqrt{\frac{\log p}{m N}} \leq \epsilon \text { i.e. } m \sim \frac{\log p}{\epsilon^{2} N} .
$$

For this choice of m we have

$$
\mathbb{E}\left\|x-\frac{1}{m} \sum_{i=1}^{m} Z_{i}\right\|_{\infty, p} \leq \epsilon .
$$

In particular, there exists $\omega \in \Omega$ such that

$$
\left\|x-\frac{1}{m} \sum_{i=1}^{m} Z_{i}(\omega)\right\|_{\infty, p} \leq \epsilon
$$

and so for $z:=\frac{1}{m} \sum_{i=1}^{m} Z_{i}(\omega)$, we have $\|x-z\|_{\infty, p} \leq \epsilon$.
We finish the proof for the large scale by noting that there exists at most $(2 N+1)^{m}$ different values of $z:=\frac{1}{m} \sum_{i=1}^{m} Z_{i}(\omega)$.

For the small scale, remark that $\|x\|_{\infty, p} \leq c N^{-1 / 2}$ because $\left|\left\langle\Gamma_{j}, x\right\rangle\right| \leq\left|\Gamma_{j}\right|_{\infty}|x|_{1} \leq$ $c N^{-1 / 2} \forall j=1, \ldots, N$. Thus, $\mathcal{B}_{1}^{N} \subset c N^{-1 / 2} \mathcal{B}_{\infty, p}$, where $\mathcal{B}_{\infty, p}$ denotes the unit ball w.r.t. $\|\cdot\|_{\infty, p}$. Now, we want to compute $N\left(\epsilon, c N^{-1 / 2} \mathcal{B}_{\infty, p},\|\cdot\|_{\infty, p}\right)=N\left(c^{-1} \sqrt{N} \epsilon, \mathcal{B}_{\infty, p},\|\cdot\|_{\infty, p}\right)$. Denote by Λ a maximal set of $c^{-1} \sqrt{N} \epsilon$-separated points of $\mathcal{B}_{\infty, p}$ w.r.t. $\|\cdot\|_{\infty, p}$. We know that $N\left(c^{-1} \sqrt{N} \epsilon, \mathcal{B}_{\infty, p},\|\cdot\|_{\infty, p}\right) \leq|\Lambda|$. We have

$$
\cup_{x \in \Lambda}\left(x+\frac{\sqrt{N} \epsilon}{2 c} \mathcal{B}_{\infty, p}\right) \subset\left(1+\frac{\sqrt{N} \epsilon}{2 c}\right) \mathcal{B}_{\infty, p}
$$

where, by defintion of Λ, the balls $\left(x+\frac{\sqrt{N} \epsilon}{2 c} \mathcal{B}_{\infty, p}\right), \forall x \in \Lambda$ are all disjoint. Thus, by taking the volume, we get

$$
|\Lambda|\left(\frac{\sqrt{N} \epsilon}{2 c}\right)^{N}\left|\mathcal{B}_{\infty, p}\right| \leq\left(1+\frac{\sqrt{N} \epsilon}{2 c}\right)^{N}\left|\mathcal{B}_{\infty, p}\right|
$$

which yields

$$
N\left(c^{-1} \sqrt{N} \epsilon, \mathcal{B}_{\infty, p},\|\cdot\|_{\infty, p}\right) \leq|\Lambda| \leq\left(1+\frac{2 c}{\sqrt{N} \epsilon}\right)^{N}
$$

3. Combinatorial argument and Theorem of the majorizing measure

We denote by \mathcal{U}_{d} the set of all the unit vectors $x \in \mathcal{S}^{N-1}$ such that $|\operatorname{Supp}(x)| \leq d$, where $\operatorname{Supp}(x)$ stands for the support of x and \mathcal{S}^{d-1} is the unit euclidean ball of \mathbb{R}^{N}.
Theorem 0.2. Let T be a subset of \mathbb{R}^{N} and g_{1}, \ldots, g_{n} be n i.i.d. standard gaussian random variables. We have

