
1. Introduction

2. Maurey’s empirical method

We denote by Ud the set of all the unit vectors x ∈ SN−1 such that |Supp(x)| ≤ d,
where Supp(x) stands for the support of x and Sd−1 is the unit euclidean ball of IRN . Let
Γ be an orthogonal matrix with size N . We assume that all the entries of Γ are such that

(0.1) |Γij | ≤
c√
N
,∀i, j ∈ {1, . . . , N},

where c > 0 is an absolute constant.
We denote by Γ1, . . . ,ΓN the row vectors of Γ and we define for some p ∈ {1, . . . , N}

the norm
‖x‖∞,p := max

1≤j≤p
| 〈Γj , x〉 |, ∀x ∈ IRN .

We want to compute the entropy numbers N(ε,Ud, ‖·‖∞,p). For that we will use the
following `N1 approximation of the set Ud:

Ud ⊂
√
dBN1 ,

where BN1 denotes the unit `N1 ball of IRN . Remark that for every ε > 0, we have
N(ε,

√
dBN1 , ‖·‖∞,p) = N(ε/

√
d,BN1 , ‖·‖∞,p).

Theorem 0.1. There exists an absolute constant c > 0 such that the following holds.

N(ε,BN1 , ‖·‖∞,p) ≤

 exp
(
c log p
Nε2

log(2N + 1)
)
, ∀ε > 0;

exp
(
N log

(
1 + 2c

ε
√
N

))
∀ε > 0.

Proof.
The proof is splited in two cases: for small “scale” (ε ≤ n−1/2), we will use the

volumetric estimate. For larger scale (ε ≥ n−1/2), we will use the empirical method of
Maurey.

Let x ∈ BN1 . We define the random variable Z with values in {±e1, . . . ,±eN} ∪ {0}
(where (e1, . . . , eN ) is the canonical basis of IRN ) by

P[Z = Sign(xi)ei] = |xi|, ∀i = 1, . . . , N and P[Z = 0] = 1− ‖x‖1 .

Note that IEZ = x.
Take Z1, . . . , Zm be m i.i.d. random variables having the same probability distribution

as Z. By the Giné-Zinn symmetrization argument and the classical Gaussian bound on
Rademacher processes, we obtain

(?) := IE

∥∥∥∥∥x− 1
m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

≤ 2
m

IEZIEε

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
∞,p

≤ c

m
IEZIEg

∥∥∥∥∥
m∑
i=1

giZi

∥∥∥∥∥
∞,p

where ε1, . . . , εm are m i.i.d. Rademacher r.v. and g1, . . . , gm are m i.i.d. standard Gaussian
r.v..

Set γj :=
∑m

i=1 gi 〈Γj , Zi〉 for all j = 1, . . . , p. For every 1 ≤ j ≤ p, γj is a centered
Gaussian r.v. with variance σ2

j =
∑m

i=1 〈Γj , Zi〉
2 ≤ cm/N (where we use the upper bound

(0.1). Thus, by using the Gaussian maximal inequality,

IEg

∥∥∥∥∥
m∑
i=1

giZi

∥∥∥∥∥
∞,p

≤
√

log p
√
cm

N
.

This yields (?) ≤ c
√

(log p)/(mN).
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Now, we choose the minimal m such that

c

√
log p
mN

≤ ε i.e. m ∼ log p
ε2N

.

For this choice of m we have

IE

∥∥∥∥∥x− 1
m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

≤ ε.

In particular, there exists ω ∈ Ω such that∥∥∥∥∥x− 1
m

m∑
i=1

Zi(ω)

∥∥∥∥∥
∞,p

≤ ε

and so for z := 1
m

∑m
i=1 Zi(ω), we have ‖x− z‖∞,p ≤ ε.

We finish the proof for the large scale by noting that there exists at most (2N + 1)m

different values of z := 1
m

∑m
i=1 Zi(ω).

For the small scale, remark that ‖x‖∞,p ≤ cN−1/2 because | 〈Γj , x〉 | ≤ |Γj |∞|x|1 ≤
cN−1/2∀j = 1, . . . , N . Thus, BN1 ⊂ cN−1/2B∞,p, where B∞,p denotes the unit ball w.r.t.
‖·‖∞,p.Now, we want to compute N(ε, cN−1/2B∞,p, ‖·‖∞,p) = N(c−1

√
Nε,B∞,p, ‖·‖∞,p).

Denote by Λ a maximal set of c−1
√
Nε-separated points of B∞,p w.r.t. ‖·‖∞,p. We know

that N(c−1
√
Nε,B∞,p, ‖·‖∞,p) ≤ |Λ|. We have

∪x∈Λ

(
x+
√
Nε

2c
B∞,p

)
⊂
(

1 +
√
Nε

2c

)
B∞,p,

where, by defintion of Λ, the balls
(
x+

√
Nε
2c B∞,p

)
, ∀x ∈ Λ are all disjoint. Thus, by taking

the volume, we get

|Λ|
(√Nε

2c

)N
|B∞,p| ≤

(
1 +
√
Nε

2c

)N
|B∞,p|,

which yields

N(c−1
√
Nε,B∞,p, ‖·‖∞,p) ≤ |Λ| ≤

(
1 +

2c√
Nε

)N
.

3. Combinatorial argument and Theorem of the majorizing measure

We denote by Ud the set of all the unit vectors x ∈ SN−1 such that |Supp(x)| ≤ d,
where Supp(x) stands for the support of x and Sd−1 is the unit euclidean ball of IRN .

Theorem 0.2. Let T be a subset of IRN and g1, . . . , gn be n i.i.d. standard gaussian
random variables. We have
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