
1. Introduction

For a stochastic process (Xt : t ∈ T ), we define

IE sup
t∈T

Xt := sup
(
IE sup

t∈F
Xt : F ⊂ T, F finite

)
The relevant object to study to bound a Gaussian process (Xt : t ∈ T ) is the metric

space (T, d) where

d(s, t) :=
(
IE(Xs −Xt)2

)1/2
.

A very important fact is that for any u > 0,

P
[
|Xs −Xt| ≥ ud(s, t)

]
≤ exp(−u2/2).

Bounding processes defined on abstract spaces T is in most of the case a succession of
combination of concentration’s inequality with the so called union-bound. What is heard
by union bound is the simple fact that for any familly of events (Ai)i, the probability
measure of the union is smaller than the sum of all the probability:

P
[
∪i Ai

]
≤
∑
i

P[Ai].

Applying this union bound to familly of events related to sequences of partitions of a metric
space is the heart of this section. Undertsanding how to construct convenient sequences of
partitions of the metric space (d, T ) is the core of the proof of upper and lower bounds on
the quantity IE maxt∈T Xt.

The heart of this section is to understand the trade-off between the concentration proper-
ties of the increments of the process (Xt : t ∈ T ) and the complexity of the size t (measured
w.r.t. the canonical distance (or sequence of distance (cf. the sequence of interpolated
norms associated with Rademacher processes, i.e. Theorem?? and Theorem??)).

2. ε-net argument of Pisier

We will present this argument through the following problem: let X,X1, . . . , Xn be
n+ 1 i.i.d. random vectors of IRd. We assume that

(1) X is isotrope: i.e. ∀u ∈ IRd, IE 〈u,X〉2 = ‖u‖2 ;
(2) X is ψ2 w.r.t. ‖·‖2: i.e. for all u ∈ IRd and any t > 0,

P[| 〈u,X〉 | > t ‖u‖2] ≤ 2 exp(−ct2);

(3) X is mean zero.
We want to study the sampling problem in this setup: given is 0 < κ, η < 1, we want

to know what is the minimal sample size n needed to have, with probability greater than
1− κ,

sup
u∈Sd−1

∣∣∣ 1
n

n∑
i=1

〈u,Xi〉2 − 1
∣∣∣ ≤ η,

where Sd−1 is the unit euclidean ball of IRd.
The solution to this problem is n ≥ C(κ, η)d, where C(κ, η) is a constant depending

only on κ and η. This means that the sample size has to be of the order of the dimension d.
Now, we turn to a proof of this fact using the ε-net argument.
Let 0 < ε < 1/2 and Nε be a maximal ε-net of Sd−1 w.r.t. the euclidean metric. This

means that Nε is a subset of Sd−1 of maximal cardinality such that every elements x 6= y
in Nε are ε-far w.r.t. the ‖·‖2-norm.

Let u ∈ Nε. We want a concentration inequality for |n−1
∑
〈u,Xi〉2−1|. We know that

〈u,X〉 is a ψ2 random variable thus, 〈u,X〉2 is a ψ1 random variable such that
∥∥∥〈u,X〉2∥∥∥

ψ1

=

1
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‖〈u,X〉‖2ψ2
≤ c ‖u‖22. Now, we use Bernstein’s inequality for ψ1 random variables (cf.

Theorem ??) to get, for every t > 0, with probability greater than 1− 2 exp(−cnt2 ∧ t)

(0.1)
∣∣∣ 1
n

n∑
i=1

〈u,Xi〉2 − 1
∣∣∣ ≤ ct ‖u‖22 = ct.

We use an union bound to obtain the last result uniformly over the finite set Nε: for every
t > 0, with probability greater than 1− 2|Nε| exp(−cnt2 ∧ t),

(0.2)
∣∣∣ 1
n

n∑
i=1

〈u,Xi〉2 − 1
∣∣∣ ≤ ct,∀u ∈ Nε.

Since |Nε| ≤ (c/ε)d−1 (cf.[1]), Equation (0.2) holds with probability at least 1− 2 exp
(
(d−

1) log(c/ε)− cnt2 ∧ t
)
.

Now, we want to obtain the result of (0.2) uniformly over Sd−1. For this task we use
the ε-net argument : let u ∈ Sd−1; we want to write u as

(0.3) u =
∞∑
i=0

δiui s.t. ui ∈ Nε and δ0 = 1, |δi| ≤ εi,∀i ≥ 1.

There exists u0 ∈ Nε such that ‖u− u0‖2 ≤ ε. If u = u0 the claim follows otherwise
u− u0

‖u− u0‖2

∈ Sd−1.

Thus, there exists u1 ∈ Sd−1 such that∥∥∥∥ u− u0

‖u− u0‖2

− u1

∥∥∥∥
2

≤ ε.

We continue this argument to obtain (0.3).
Now, we consider the random matrice

Γ :=
1√
n

 Xt
1

...
Xt
n

 .

Let u ∈ Sd−1 and consider its decomposition (0.3). We have

(0.4)
( 1
n

n∑
i=1

〈u,Xi〉2
)1/2

= ‖Γu‖2 ≤
∑
i

|δi| ‖Γui‖2 ≤
1

1− ε
max

(
‖Γu‖2 : u ∈ Nε

)
and, similarly,
(0.5)
‖Γu‖2 ≥ ‖Γu0‖2 −

∑
i≥1

|δi| ‖Γui‖2 ≥ min
(
‖Γu‖2 : u ∈ Nε

)
− ε

1− ε
max

(
‖Γu‖2 : u ∈ Nε

)
.

Using Equation (0.2), with probability greater than 1− 2 exp
(
(d− 1) log(c/ε)− cnt2 ∧ t

)
,

(0.6)
(√

1− ct− 2ε
√

1 + ct
)2 ≤ 1

n

n∑
i=1

〈u,Xi〉2 ≤ (1 + 2ε)2(1 + ct),∀u ∈ Sd−1.

Note that the lower estimate holds only when ct < 1 and that the case ct ≥ 1 is trivial for
the lower bound.

Let 0 < κ, η < 1. We can choose ε and t depending only on κ and η such that
Equation (0.6) implies

sup
u∈Sd−1

∣∣∣ 1
n

n∑
i=1

〈u,Xi〉2 − 1
∣∣∣ ≤ η.
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To make the probability 1− 2 exp
(
(d− 1) log(c/ε)− cnt2 ∧ t

)
greater than 1− η we have

to take n at least of the same order of d.

3. Chaining and the Koltchinskii-Dudley entropy’s integral

In this Section, we present some upper bounds for the supremum supt∈T Xt obtained
using the entropy integral. We start with the classical chaining argument under the
subgaussian assumption on the increment of the process:

(0.7) P
[
|Xs −Xt| > td(s, t)

]
≤ 2 exp

(
− ct2

)
,∀s, t ∈ T

where d is a semi-metric on T .
Then, we follow the line of [3] to explore the case where the process (Xt : t ∈ T ) is such

that the increment have a ψ behaviour w.r.t. some distance d:

(0.8) ‖Xs −Xt‖ψ ≤ cd(s, t)∀s, t ∈ T.

We first start by introducing the metric quantities and complexities of a semi-metric
space which are at the heart of this approach.

Definition 0.1. Let (T, d) be a semi-metric space and ε > 0. The ε-covering number
N(ε, T, d) of (T, d) is the minimal number of balls of radius ε needed to cover T . The
ε-packing number D(ε, T, d) is the maximal number of ε-separated points in T . The
entropy numbers are the logarithms of the covering and packing numbers respectively.

Note that
N(ε, T, d) ≤ D(ε, T, d) ≤ N(ε/2, T, d), ∀ε > 0

and by definition a semi-metric space (T, d) is totally bounded when covering and packing
numbers are finite for every ε > 0.

Finally, in all the following, we will need the following continuity assumption on the
process (Xt : t ∈ T ) w.r.t. the semi-metric d:

almost surely, for every t ∈ T for every sequences (tn : n ∈ IN) of T such that
(0.9)

d(tn, t) tends to zero when n tends to infinity, the process (Xtn : n ∈ IN) tends to Xt when n tends to infinity.
(0.10)

Theorem 0.1. There exists some absolute constants c0, c1, c2, c3 and c4 such that the
following holds. Let (T, d) be a semi-metric space. Let (Xt : t ∈ T ) be a stochastic process
satisfying the continuity assumption (0.9) and the subgaussian condition (0.7).

For every v ≥ c0, with probability greater than 1− c1 exp(−c2v2)

sup
s,t∈T

|Xt −Xs| ≤ c3v
∫ ∞

0
log1/2N(ε, T, d)dε

and

IE sup
s,t∈T

|Xt −Xs| ≤ c4
∫ ∞

0
log1/2N(ε, T, d).

Proof.We define, for every integer i ≥ 1,

εi := inf{ε > 0 : N(ε, T, d) ≤ 22i} and ε0 := diam(T, d).

Consider a sequence (Ti : i ≥ 0) of subsets of T such that, for every integer i ≥ 1, Ti is a set
of minimal cardinality satisfying that for every point t ∈ T there exists ti ∈ Ti such that
d(t, ti) ≤ εi. By definition, |Ti| = N(εi, T, d) ≤ 2.22i

and |T0| = 1. For each point t ∈ T
and any level i ∈ IN, we denote by πi(t) ∈ Ti one of the points of Ti which are εi-close to t.
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By the continuity assumption on the process (Xt : t ∈ T ), we have, almost surely, for
every t ∈ T ,

(0.11) Xt −Xπ0(t) =
∞∑
i=0

Xπi+1(t) −Xπi(t).

Let be given a level i ∈ IN. Let t ∈ T . By using the subgaussian assumption (0.7), for
every u > 0, with probability greater than 1− 2 exp(−cu2)

(0.12) |Xπi+1(t) −Xπi(t)| ≤ ud(πi+1(t), πi(t)) ≤ u(εi + εi+1) ≤ 2uεi

To get this result uniformly over all links {(πi+1(t), πi(t)),∀t ∈ T}, we use an union bound:
with probability greater than 1− 2|Ti+1||Ti| exp(−cu2) ≥ 1− 2 exp

(
3.2i log 2− cu2)

)
,

|Xπi+1(t) −Xπi(t)| ≤ 2uεi, ∀t ∈ T.

To make this result interesting the term “cu2” has to defy the term “3.2i log 2” in the
probability estimate. Thus, we apply the last result to u := v2i/2 where v has to be
larger than

√
6 log 2/c. Finally, for the level i, we obtain with probability greater than

1− 2 exp
(
− (c/2)v22i

)
,

|Xπi+1(t) −Xπi(t)| ≤ 2v2i/2εi, ∀t ∈ T,
for every v larger than an absolute constant.

We apply Equation (3) combined with an union bound on all the level i ∈ IN, to get,
with probability greater than 1− 2

∑∞
i=0 exp

(
− (c/2)v22i

)
,

(0.13) |Xt −Xπ0(t)| ≤ 2v
∞∑
i=0

2i/2εi,∀t ∈ T.

The sum in the probability estimate is geometric, so it is comparable to its first term. Thus,
Equation0.13 holds with probability greater than 1− c0 exp(−c1v2).

The right hand term in Equation0.13 can be written as an integral: the Koltchinskii-
Dudley entropy integral, in the following way. Let i ∈ IN, if ε < εi then N(ε, T, d) > 22i

and so N(ε, T, d) ≥ 22i
+ 1. So we have√

log(1 + 22i)(εi − εi+1) ≤
∫ εi

εi+1

√
logN(ε, T, d)dε.

Since log(1 + 22i
) ≥ 2i log 2, summing over all i ≥ 0 yields√

log 2
∞∑
i=0

2i/2(εi − εi+1) ≤
∫ ε0

0

√
logN(ε, T, d)dε

and
∞∑
i=0

2i/2(εi − εi+1) =
∞∑
i=0

2i/2εi −
∞∑
i=1

2(i−1)/2εi ≥
(

1− 1√
2

) ∞∑
i=0

2i/2εi.

Finally, we obtain, for every v larger than an absolute constant, with probability greater
than 1− c0 exp(−c1v2),

sup
t∈T
|Xt −Xπ0(t)| ≤ c2v

∫ ∞
0

log1/2
(
N(ε, T, d)

)
dε.

By a classical integration argument, we obtain

IE sup
t∈T
|Xt −Xπ0(t)| =

∫ ∞
0

P
[

sup
t∈T
|Xt −Xπ0(t)| > u

]
du ≤ c4

∫ ∞
0

log1/2
(
N(ε, T, d)

)
dε.

To conclude, we use the fact that |T0| = 1, thus, for every t, s ∈ T ,

|Xt −Xs| ≤ |Xt −Xπ0(t)|+ |Xs −Xπ0(s)|.
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The subgaussian assumption (0.7) can be written as ‖Xs −Xt‖ψ2
≤ cd(s, t),∀s, t ∈ T .

This assumption has been generalized to the one of Equation (0.8). The result is given in
the following theorem.

Theorem 0.2. Let ψ be a Young-Orlicz modulus such that there exists an absolute constant
c satisfying

limsupx,y 7−→∞
ψ(x)ψ(y)
ψ(xy)

≤ c.

Let (Xt : t ∈ T ) be a separable stochastic process with

‖Xs −Xt‖ψ ≤ Cd(s, t), ∀s, t ∈ T

for some semi-metric d on T and a constant C. Then, for any δ, η > 0,∥∥∥∥∥ sup
d(s,t)≤δ

|Xs −Xt|

∥∥∥∥∥
ψ

≤ K
[ ∫ η

0
ψ−1

(
D(ε, T, d)

)
dε+ δψ−1

(
D2(η, T, d)

)]
,

for a constant K depending only on ψ and C.

Proof.Without loss of generality we can assume thatD(η, T, d) and
∫ η
0 ψ
−1
(
D(ε, T, d)

)
dε

are finite.
We construct a sequence (Ti : i ≥ 0) of nested sets T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ T such that

Tj is a maximal set of η2−j-separated points in T . By definition, we have

(0.14) |Tj | ≤ D(η2−j , T, d).

We construct “links” between the elements of the sequence (Ti : i ≥ 0): for every point
tj+1 ∈ Tj+1 we define a unique point tj ∈ Tj such that d(tj+1, tj) ≤ η2−j . So that every
point tj+1 is associated with a sequence, called a chain: tj+1, tj , tj−1, . . . , t0.

Given a level k ∈ IN, we can control uniformly all the increments of the process at this
level: let sk+1, tk+1 ∈ Tk+1 and s0 ∈ T0 (respectively t0 ∈ T0) the corresponding beginning
of the chain associated with sk+1 (respectively tk+1). We have

∣∣(Xsk+1
−Xs0)− (Xtk+1

−Xt0)
∣∣ ≤ ∣∣∣ k∑

j=0

(Xsj+1 −Xsj )−
k∑
j=0

(Xtj+1 −Xtj )
∣∣∣

≤ 2
k∑
j=0

max
(
|Xu −Xv| : (u, v) ∈ Tj+1 × Tj , d(u, v) ≤ η2−j and (u, v) is a link

)
.

Now, we apply the maximal inequality of Proposition?? to every level j to get∥∥max
(
|Xu −Xv| : (u, v) ∈ Tj+1 × Tj , d(u, v) ≤ η2−j and (u, v) is a link

)∥∥
ψ

≤ K0ψ
−1(|Tj+1|) max

(
‖Xu −Xv‖ψ : (u, v) ∈ Tj+1 × Tj , d(u, v) ≤ η2−j

)
≤ K1ψ

−1(D(η2−j−1, T, d))η2−j

and so∥∥max
(∣∣(Xs −Xs0)− (Xt −Xt0)

∣∣ : s, t ∈ Tk+1

)∥∥
ψ
≤ K2

∫ η

0
ψ−1

(
D(ε, T, d)

)
dε,

where in this bound, s0 and t0 are the endpoints of the chains starting at s and t respectively.
Using the triangle inequality, it remains to upper bound the increments |Xs0 −Xt0 |.

For every pair of endpoints s0, t0 of chains starting at two points of Tk+1 within distance
δ of each other, choose exactly one pair sk+1, tk+1 in Tk+1 with d(sk+1, tk+1) < δ, whose
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chains end at s0, t0. By definition of T0, this gives at most D2(η, T, d) such pairs. By the
triangle inequality,

|Xs0 −Xt0 | ≤ |(Xs0 −Xsk+1
)− (Xt0 −Xtk+1

)|+ |Xsk+1
−Xtk+1

|.

where ∥∥(Xs0 −Xsk+1
)− (Xt0 −Xtk+1

)
∥∥
ψ
≤ K2

∫ η

0
ψ−1

(
D(ε, T, d)

)
dε

and, applying Proposition??,∥∥Xsk+1
−Xtk+1

∥∥
ψ
≤ Kψ−1(D2(η, T, d))δ.

Let k tends to infinity to conclude the proof.

Corollary 0.1. There exists an absolute constant c > 0 such that the following holds.∥∥∥∥max
s,t∈T

|Xs −Xt|
∥∥∥∥
ψ

≤ c
∫ Diam(T,d)

0
ψ−1

(
D(ε, T, d)

)
dε.

Proof.Apply Theorem 0.2 to η = δ = Diam(T, d).

4. Generic chaining and the γ-functional of M.Talagrand

In this section, we present an improvement upon the chaining argument. This argument
is called the generic chaining (cf. [2]). The Koltchinski-Dudley entropy integral is
the natural metric complexity coming out of the chaining approach. For the generic
chaining argument, the natural metric complexity measure is given by the γ-functional of
M.Talagrand that we introduce now:

Definition 0.2. Let (T, d) be a semi-metric space. We say that a sequence (Tn : n ≥ 0) of
subsets of T is admissible when |T0| ≤ 1 and |Tn| ≤ 22n∀n ≥ 1.

Let α > 0. We define the γ-functional of Talagrand by

γα(T, d) := inf
(Tn)

sup
t∈T

∑
n≥0

2n/αd(t, Tn)

where the infimum is taken over all admissible sequences (Tn)n and d(t, Tn) := infs∈Tn d(t, s).

The functions γα are purely metric and are upper bounded by the Koltchinski-Dudley
entropy integral:

γα(T, d) ≤ c
∫ ∞

0
log1/α(ε, T, d)dε.

Indeed, for every n ∈ IN, take Tn to be a minimal εn-net of T , w.r.t. d, where εn is defined
by N(εn, T, d) ≤ 22n

. By minimality (Tn : n ∈ IN) is an admissible sequence and for every
n ∈ IN, if ε < εn then N(ε, T, d) > 22n

and so N(ε, T, d) ≥ 22n
+ 1. So we have

log1/α(1 + 22n
)(εn − εn+1) ≤

∫ εn

εn+1

log1/αN(ε, T, d)dε.

Since log1/α(1 + 22n
) ≥ 2n/α log1/α(2), summing over all n ≥ 0 yields

log1/α(2)
∞∑
n=0

2n/α(εn − εn+1) ≤
∫ ε0

0
log1/αN(ε, T, d)dε

and
∞∑
n=0

2n/α(εn − εn+1) =
∞∑
n=0

2n/αεn −
∞∑
n=0

2(n−1)/αεn ≥
(

1− 1√
2

) ∞∑
n=0

2n/αεn.
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We conclude by using

(0.15) sup
t∈T

∑
n≥0

2n/αd(t, Tn) ≤
∑
n≥0

2n/α sup
t∈T

d(t, Tn) ≤
∑
n≥0

2n/αεn.

Note that, in the first inequality of (0.15), the gap between the right and left sides can be
very large.

Now, we turn to the upper bound of the supremum of empirical processes under the ψ2

assumption of (0.7).

Theorem 0.3. There exists some absolute constants c0, c1, c2, c3 and c4 such that the
following holds. Let (T, d) be a semi-metric space. Let (Xt : t ∈ T ) be a stochastic process
satisfying the continuity assumption (0.9) and the subgaussian condition (0.7).

For every v ≥ c0, with probability greater than 1− c1 exp(−c2v2)

sup
s,t∈T

|Xt −Xs| ≤ c3vγ2(T, d)

and
IE sup

s,t∈T
|Xt −Xs| ≤ c4γ2(T, d).

Proof.The proof follows the same lines as the proof of Theorem 0.3. We sketch here
the proof. Let (Tn : n ∈ IN) be an admissible sequence. For every t ∈ T and n ∈ IN denote
by πn(t) one of the closest element of Tn to t. The union bound and the subgaussian
assumption yield the following probability bound: for every v greater than an absolute
constant, with probability greater than 1− 2

∑∞
i=0 exp(−c1v22i),

|Xt −Xπ0(t)| ≤ c3
∞∑
n=0

2n/2d(πn(t), πn+1(t)),∀t ∈ T.

The claim follows easily.

Note that one can replace the subgaussian assumption (0.7) by a ψα assumption (α ≥ 1)
on the increments of the process:

(0.16) P
[
|Xs −Xt| > td(s, t)

]
≤ 2 exp

(
− ctα

)
,∀s, t ∈ T.

In this case, Theorem 0.3 is still true when replacing the complexity measure γ2(T, d) by
the quantity γα(T, d).

4.1. Generic Chaining for processes with non-homogenous tail behaviour.
It is usual to meet process having two different concentration behaviours. For instance, in
Theorems ??, ?? and ??, the empirical mean X̄n has a subgaussian behaviour for small
concentration level (values of t in (0, c], for some c depending only on the tail behaviour
of X) and, in general, a ψα behaviour for large deviation (values of t larger than c). The
subgaussian behaviour comes from the asymptotic behaviour of X̄n given by the CLT
(cf. Berry-Esseen theorem for a lower bound for small values of t). This subgaussian
non-asymptotic behaviour of the mean is the “beginning” of the asymptotic normality of
the mean. On the opposite, the ψα behaviour of X̄n is related to the behaviour of a generic
element X. Indeed, for a realisation ω ∈ Ω, most of the elements Xi(ω) are around the
mean IEX (providing the subgaussian concentration) whereas only few of them are far
from the mean (providing the same behaviour of a single realisation Xi(ω) to X̄n(ω)).

In this subsection, we study the maximum of processes with increments having the
following concentration behaviour for some α > 0:

(0.17) P
[
|Xs −Xt| ≥ u

]
≤ 2 exp

(
−
( u2

d2
2(s, t)

)
∧
( uα

dαα(s, t)

))
,∀u > 0, s, t ∈ T.
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Theorem 0.4. There exists absolute constants c0 and c1 such that the following holds.
Let α > 0 and T be a set endowed with two semi-metrics dα and d2. Consider a process
(Xt : t ∈ T ) having the continuity property (0.9) w.r.t. d2 and dα and satisfying the
concentration condition (0.17). Then, for every u ≥ c0, with probability greater than
1− c1 exp(−c2u2 ∧ uα),

sup
t,s∈T

|Xt −Xs| ≤ c3u
(
γ2(T, d2) + γα(T, dα)

)
and

IE sup
t,s∈T

|Xt −Xs| ≤ c4
(
γ2(T, d2) + γα(T, dα)

)
.

Proof.Take (An : n ∈ IN) and (Bn : n ∈ IN) be two admissible sequences of T satisfying

sup
t∈T

∑
n≥0

2n/2d2(t, An) ≤ 2γ2(T, d2) and sup
t∈T

∑
n≥0

2n/αdα(t, Bn) ≤ 2γα(T, dα).

We construct the admissible sequence (Tn : n ∈ IN) by setting

T0 := {t0} and Tn := An−1 ∪Bn−1, ∀n ≥ 1,

where t0 is one element of T . We also define πn(t) to be the closest point to t ∈ T in Tn
for each n ∈ IN and t ∈ T .

Let t ∈ T and n ∈ IN. Using the estimate on the concentration behaviour of the
increments (cf. Equation (0.16)), we have for all u > 0, with probability greater than
1− 2 exp(−2n[u2 ∧ uα]),

(0.18) |Xπn+1(t) −Xπn(t)| ≤ u2n/αdα(πn+1(t), πn(t)) + u2n/2d2(πn+1(t), πn(t)).

Using an union bound, we extend the last inequality to all links {(πn+1, πn(t)) : t ∈ T}
and then to all level n ∈ IN. We have, for every u ≥ c0, with probability greater than
1− c1 exp(−c2u2 ∧ uα), for every s, t ∈ T ,

|Xt −Xs| ≤ |Xt −Xπ0(t)|+ |Xs −Xπ0(s)|

≤
∞∑
n=0

|Xπn+1(t) −Xπn(t)|+
∞∑
n=0

|Xπn+1(s) −Xπn(s)|

≤ u sup
t∈T

∑
n≥0

(
2n/αdα(πn+1(t), πn(t)) + 2n/2d2(πn+1(t), πn(t))

)
.

By definition of (An : n ∈ IN), we have, for each n ≥ 1, Tn ⊂ An−1, so

d2(πn(t), πn+1(t)) ≤ d2(πn(t), t) + d2(t, πn+1(t)) ≤ d2(t, An−1) + d2(t, An).

Moreover, it is easy to see that, for every semi-metric space (T ′, d′) and η > 0

γη(T ′, d′) ≥ inf
t0∈T ′

sup
t∈T ′

d(t, t0) ≥ (1/2)diam(T ′, d′),

thus d2(π1(t), t0) ≤ diam(T, d) ≤ 2γ2(T, d2). Then, proceeding similarly for dα, we get, for
every u ≥ c0, with probability greater than 1− c1 exp(−c2u2 ∧ uα),

sup
s,t∈T

|Xs −Xt| ≤ 4u
(
γα(T, dα) + γ2(T, d2)

)
.

The upper bound on the expectation follows by a classical integration argument.
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4.2. Sum of square of ψ2 functions. In this section, we give a particular look to
upper bound the supremum

(0.19) sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− IEf2(X)

∣∣∣∣∣ ,
where X1, . . . , Xn are n i.i.d. random variables with values in a measurable space X and
F is a class of real-valued functions defined on X . We assume that

(0.20) diam(F, ‖·‖ψ2(µ)) := α <∞,

where µ is the probability distribution of X ∼ X1. In terms of random variables, Assump-
tion (0.20) means that for all f ∈ F , f(X) has a ψ2 behaviour and its ψ2 norm is uniformly
bounded over F by α.

Theorem 0.5. There exists absolute constants c0, c1 such that the following holds. Let
F ⊂ L2(µ) be star-shaped

We introduce the following notation. For every function f ∈ L2(µ), we set

(0.21) Z(f) :=
1
n

n∑
i=1

f2(Xi)− IEf2(X) and W (f) :=
( 1
n

n∑
i=1

f2(Xi)
)1/2

.

Thanks to the star-shaped assumption, we can work as if all the elements f ∈ F are
such that IEf2(X) = 1. The general case can then be handled thanks to a localisation
argument.

The first thing that one has to obtain when studying upper bounds for supremum of
processes as in (0.19) is the concentration behaviour of increments of the process. Namely,
we need concentration result for Z(f)− Z(g) for f, g ∈ F . Since we will treat the end of
the chain by using a trick, the deviation behaviour of the increments W (f − g) will be of
importance as well.

Lemma 0.1. There exists an absolute constant c1 such that the following holds. Let
F ⊂ S(L2(µ)) (the unit ball of L2(µ)). Denote α := diam(F,ψ2). For every f, g ∈ F we
have:

(1) for every u ≥ 1,

P
[
W (f − g) ≥ u ‖f − g‖ψ2

]
≤ 2 exp

(
− c1nu2

)
;

(2) for every u > 0,

P
[
|Z(f)− Z(g)| ≥ uα ‖f − g‖ψ2

]
≤ 2 exp

(
− c1n(u ∧ u2)

)
;

and for every u > 0,

P
[
|Z(f)| ≥ uα2

]
≤ 2 exp

(
− c1n(u ∧ u2)

)
.

Proof.Let f, g ∈ F . Since f, g ∈ Lψ2 , we have
∥∥(f − g)2

∥∥
ψ1

= ‖f − g‖2ψ2
. Then, we

apply Bernstein’s inequality for ψ1 random variables (cf. Theorem??) to get, for every
t > 0, with probability greater than 1− 2 exp(−c1n(t ∧ t2))

(0.22)
1
n

n∑
i=1

(f − g)2(Xi)− IE(f − g)2 ≤ t ‖f − g‖2ψ2
.

Using ‖f − g‖ψ2
≥ ‖f − g‖2 with Equation (0.22), it is easy to get for every u ≥ 2,

P
[
W (f − g) ≥ u ‖f − g‖ψ2

]
≤ P

[ 1
n

n∑
i=1

(f − g)2(Xi)− IE(f − g)2 ≥ (u2 − 1) ‖f − g‖2ψ2

]
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≤ 2 exp
(
− c1nu2

)
.

To prove the end of the claim, we use that IEf2 = IEg2, |f2 − g2| ≤ 4(f − g)2 so∥∥f2 − g2
∥∥
ψ1
≤ 4 ‖f − g‖2ψ2

After dealing with the concentration properties of the increments of the process, we
want to obtain a uniform upper bound. For that we are going to use the generic chaining
argument. But, since we work in a very special framework (sum of square of ψ1 r.v.), we
will perform a particular chaining argument which will allow us to avoid the γ1(F,ψ2) in
the upper bound. Indeed, according to Theorem 0.4 and the deviation inequality on the
increments of (Z(f) : f ∈ F ) of Lemma 0.1, we can obtain an upper bound for the process
in (0.19) proportional to γ2(F,ψ2) + γ1(F,ψ2).

Consider an almost admissible sequence (Fn : n ∈ IN) of F . That is an admissible
sequence such that

γ2(F,ψ2) ≤ 2 sup
f∈F

∞∑
n=0

2n/2dψ2(f, Fn).

If γ2(F,ψ2) = ∞ then the upper bound of Theorem 0.5 is trivial, otherwise for every
f ∈ F the sum

∑∞
n=0 2n/2dψ2(f, Fn) converges. In particular, dψ2(f, πn(f)) tends to

zero when n tends to infinity. In what follows, we will assume the non trivial case that
γ2(F,ψ2) is finite. In particular D := ∪n∈INFn is a countable dense (for the ψ2 norm)
subset of F . Take f ∈ D, there exists Ωf ⊂ Ω a measurable set of measure 1 such that
∀ω ∈ Ωf , ∀i = 1, . . . , n, πs(f(Xi(ω))) tends to f(Xi(ω)) when s tends to infinity. Thus, by
continuity of the euclidean norm in IRn, W (πs(f)) tends to W (f) on Ωf . Since ∩f∈FΩf

is a set of probability measure 1, almost surely ∀f/inF , W (πs(f) : s ∈ IN) converges to
W (f). By separability this result holds uniformly over F . The same claim follows for Z.

The idea of the proof is, for a given f ∈ F , to treat the links of the chain (πn(f) : n ∈ IN)
in three different region depending on the concentration property that we expect:

(1) f − πs0(f): where we work with the process W (f − πs0(f)) which is subgaussian
(thanks to this trick we can avoid the ψ1 behaviour of the process Z(f) and thus
the term γ1(F,ψ1));

(2) πs0−1(f)− πs1(f): where we work with process Z(πs0−1(f))− Z(πs1(f)) which is
subgaussian in this range;

(3) πs1−1(f)− π0(f): where the complexity is so small that an upper bound is trivial.

Proposition 0.1 (End of the chain). There exists an absolute constant for which the
following holds. Let F ⊂ S(L2(µ)) and α := diam(F,ψ2). With probability greater than
1− exp(−n),

sup
f∈F

W (f − πs0(f)) ≤ cγ2(F,ψ2)√
n

,

where s0 is such that 2s0 ∼ n.

Proof.Let f be in F . Since (πs(f) : s ∈ IN) tends to f in Lψ2(µ), we have in Lψ2(µ),

f − πs0(f) =
∞∑
s=s0

πs+1(f)− πs(f).

On the other hand, W is sub-linear, thus, by the using the uniform continuity of W over
F almost surely,

W (f − πs0(f)) ≤
∑
s≥s0

W (πs+1(f)− πs(f)).

Now, fix a level s ≥ s0. Using an union bound on the set of links {(πs+1(f), πs(f)) :
f ∈ F} and the sub-gaussian property of W (i.e. Lemma 0.1), we get, for every u ≥ 1,



with probability greater than 1− 2 exp(−cnu2),

W (πs+1(f)− πs(f)) ≤ u ‖πs+1(f)− πs(f)‖ψ2

4.3. Truncation argument.

5. Exercises

Exercise 0.1 (largest singular value of RM with ψ2, isotrope and independent rows).
Let K be a symmetric convex body of IRn in an isotropic position. Let X,X1, . . . , XN be
independent and uniformly distributed in K random variables. We assume that K is such
that X is subgaussian (i.e. ∃C0 : ∀t ∈ IRn, ‖〈X, t〉‖ψ2

≤ C0). Then, the largest singular
value of the operator

T :=

 X1
...
XN

 : IRn → IRN

denoted by ‖T‖ satisfies, for every x > 0, with probability greater than 1− 2 exp(−x)∣∣∣1− ‖T‖ ∣∣∣ ≤√(1 +
x

cn

) n
N
.
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