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Abstract

This tiny note concerns the spectral analysis of models of random Markov kernels,
centered around joint works in collaboration with Charles Bordenave and Pietro Caputo,
with a “large random matrices” point of view. Some open problems are given.

A (rather old now) survey about the spectral analysis of large random Markov kernels
can be found in [9]. An up to date review can be found in the Habilitation thesis of Charles
Bordenave under preparation (gives a complete bibliography). These models can be seen
as random walks or Markov chains in random environment. From the random matrix theory
point of view, these random matrices have dependent entries, and what is know concerns
mostly first order asymptotics for empirical spectral distributions, spectral edge, and prin-
cipal eigenvector. In particular, the study of the asymptotic fluctuations is completely open.

Irreversible models

We say that M ∈Mn([0, 1]) is Markov when each row sums up to 1. This set is a convex and
compact polytope, and also a compact semigroup. If X is n× n with i.i.d. real non negative
entries of mean m and variance σ2 and if D is the diagonal matrix with Dii = Xi1+ · · ·+Xin

then P = D−1X is a random Markov (transition) matrix. When X11 is exponential, then we
recover the uniform probability measure on Markov matrices (Dirichlet Markov Ensemble
[10]). The asymptotic analysis of the singular values and the eigenvalues of such matrices
is done in [7]. Some aspects can be improved using the technology developed in [8] and [3].
For instance, it is conjectured that the invariant vector is asymptotically uniform, and this
can be proved probably by imitating the argument used in [3]. It is also conjectured that
the second largest eigenvalue in module has Gumbel fluctuations as for Ginibre Ensembles.
The study of the case where X11 has a heavy tail is open, and may be done by reusing part
of [6]. In another direction, the study of random matrices with i.i.d. log-concave rows is
done in [1]. The study of fully log-concave matrices (on the n2 entries) is open.

We say that a Markov matrix M is doubly stochastic if its transpose is also Markov.
The set of n× n doubly stochastic matrices, known as the Birkhoff polytope, is convex and
compact, and is a semigroup. It can be equipped with the uniform probability measure.
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The asymptotic behavior of the singular values was studied in [11]. The behavior of the
eigenvalues is open and a circular law is conjectured1. One of the most fascinating question
regarding doubly stochastic matrices is the construction of the uniform measure from an
i.i.d. structural recipe, without using rejection, as for the Markov polytope. Recall that the
Birkhoff polytope is the convex envelope of permutation matrices (Birkhoff-von Neumann
theorem). The spectral analysis of random permutation matrices is quite fun and can be
linked with the Ewens distribution (Chinese restaurant process), see [9].

If X is as above, then L = X − D is a random Markov generator, studied in [3]. Here
again, the heavy tailed case is open, and a possible solution is to exploit part of [6].

Reversible models

If X is symmetric, then P is a reversible Markov kernel and its reversible measure is given
by the diagonal of D. The spectrum is real. A Wigner theorem is available and the first
order edge behavior is well understood [4]. It is conjectured that the second largest eigen-
value has Tracy-Widom fluctuations. The case where X11 has a heavy tail is particularly
interesting and gives rise to new limiting spectral distributions [5], while the behavior of
the invariant vector gives rise to Poisson or Poisson-Dirichlet statistics.

The study of random reversible generators instead of random reversible transition ma-
trices (Markov matrices) is discussed in [4] and may be revisited with [3] in mind.

Beyond the complete graph

The Markov transition matrix P can be seen as a random walk in random environment (i.i.d.
conductances) on the complete graph. One may consider other sequences of graphs. The
study of chain graphs corresponds to random birth and death processes, and to tridiagonal
matrices, giving rise to non universal limiting spectral distributions, see [4] and [12].

Other models

If we allow the law X11 to depend on n with an atom at 0 then we give rise to an Erdős-Rényi
random graph skeleton as in [3]. However, the complete graph model with i.i.d. conduc-
tances does not allow to consider preferential attachment graphs, ubiquitous in nature (e.g.
social networks). The spectral analysis of large preferential attachment graphs is open.

Another fascinating problem is the analogue of the Kesten-McKay theorem, for random
oriented regular graphs, linked with the free sum of Haar unitary [8].

Concepts

Models:

• Hermitian versus non-Hermitian

• Reversible versus non-reversible

• Light tails versus heavy tails

• Transition matrices versus generators

• Complete graph versus structured graphs

• Sparsity via atom versus via heavy tails

1Hoi H. Nguyen has apparently proved this circular law very recently!
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Questions:

• First order versus second order

• Singular values versus eigenvalues

• Bulk versus edge

• Most eigenvectors versus invariant vector (spatial and distributional (de)localization)

• Universality versus non-universality

Techniques:

• Perturbative methods for spectra

• Resolvent method

• Moments method

• Hermitization method

• Objective method

• Concentration of measure

• Asymptotic geometric analysis (least singular values)

• Non-linear aspects of linear algebra (Weyl, Schur, Sylvester, . . . )

• Poisson point processes

• Free probability

Caveat: the bibliography below lists our papers and some few related papers. Many
other works on closely related models are cited in all these papers (and in Charles’s HDR).
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